Patents by Inventor Daniel Rosenberg

Daniel Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12056322
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: August 6, 2024
    Assignee: SENSEL, INC.
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 12050748
    Abstract: One variation of a system for detecting inputs at a computing device includes: a substrate including a top layer, a bottom layer defining an array of support locations, and electrode pairs proximal the support locations; a touch sensor surface arranged over the top layer of the substrate; a set of spacers, each arranged over an electrode pair at a support location on the bottom layer of the substrate and including a force-sensitive material exhibiting variations in local bulk resistance responsive to variations in applied force; an array of spring elements coupled to the set of spacers, configured to support the substrate on a chassis, and configured to yield to displacement of the substrate downward toward the chassis responsive to forces applied to the touch sensor surface; and a controller configured to interpret forces of inputs on the touch sensor surface based on resistance values of the electrode pairs.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: July 30, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Ninad Sathe, Eric Rosales
  • Patent number: 12039132
    Abstract: One variation of a system for a touch sensor includes: a substrate; a baseplate; and spacer elements. The substrate defines support locations. The baseplate spans a bottom layer of the substrate and defines spring elements: aligned to the support locations of the substrate; and configured to yield to displacement of the substrate toward the baseplate responsive to forces applied over the substrate. The spacer elements: are interposed between the support locations and the spring elements; and are configured to compress responsive to forces applied over the substrate. Each spacer element, in the spacer elements, includes: an elastomer element; a first adhesive layer; and a second adhesive layer. The first adhesive layer: is arranged over the elastomer element; and coupled to the bottom substrate layer at a support location. The second adhesive layer: is arranged below the elastomer element; and coupled to the baseplate at a spring element.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: July 16, 2024
    Assignee: Sensel, Inc.
    Inventors: Ping Liu, Sophia Chau, Ninad Sathe, Darren Lochun, Ilya Daniel Rosenberg
  • Patent number: 12032745
    Abstract: One variation of a system for detecting and responding to touch inputs with haptic feedback includes: a magnetic element rigidly coupled to a chassis; a substrate; a touch sensor interposed between the substrate and a touch sensor surface; an inductor coupled to the substrate below the touch sensor surface and configured to magnetically couple to the magnetic element; a coupler coupling the substrate to the chassis, compliant within a vibration plane approximately parallel to the touch sensor surface, and locating the inductor approximately over the magnetic element; and a controller configured to intermittently polarize the inductor responsive to detection of a touch input on the touch sensor surface to oscillate the substrate in the vibration plane relative to the chassis.
    Type: Grant
    Filed: January 27, 2023
    Date of Patent: July 9, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, Brogan Miller, John Aaron Zarraga, James Junus
  • Patent number: 12012227
    Abstract: One variation of a tram system includes: a chassis; a latch configured to selectively engage a latch receiver mounted to an aircraft; an alignment feature adjacent the latch and configured to engage an alignment receiver mounted to the aircraft and to communicate acceleration and braking forces from the chassis into the aircraft; an optical sensor facing upwardly from the chassis; a drivetrain configured to accelerate and decelerate the chassis along a runway; and a controller configured to detect an optical fiducial arranged on the aircraft in optical images recorded by the optical sensor adjust a speed of the drivetrain to longitudinally align the alignment feature with the alignment receiver based on positions of the optical fiducial detected in the optical images, trigger the latch to engage the latch receiver once the aircraft has descended onto the chassis, and trigger the drivetrain to actively decelerate the chassis during a landing routine.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: June 18, 2024
    Inventor: Ilya Daniel Rosenberg
  • Publication number: 20240119755
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 11, 2024
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11954285
    Abstract: One variation of a method for detecting an input at a touch sensor—including a force-sensitive layer exhibiting variations in local resistance responsive to local variations in applied force on a touch sensor surface and a set of drive and sense electrodes—includes: driving a drive electrode with a drive signal; reading a sense signal from a sense electrode; detecting a alternating-current component and a direct-current component of the sense signal; in response to a magnitude of the direct-current component of the sense signal falling below a threshold magnitude, detecting an input on the touch sensor surface during the scan cycle based on the alternating-current component of the sense signal; and, in response to the magnitude of the direct-current component of the sense signal exceeding the threshold magnitude, detecting the input on the touch sensor surface during the scan cycle based on the direct-current component of the sense signal.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: April 9, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Vijay Rajanna, Tomer Moscovich
  • Publication number: 20240053852
    Abstract: One variation of a system for tracking stylus inputs on a touch sensor surface includes: a touch sensor surface, and a touch sensor arranged under the touch sensor surface. The touch sensor includes a substrate and a set of drive and sense electrode pairs. The system further includes an excitation inductor arranged under the touch sensor surface and a stylus. The stylus includes: a body; a conductive stylus tip; and a stylus inductor configured to inductively couple to the excitation inductor to induce a voltage at the conductive stylus tip. The system includes a controller configured to: drive the excitation inductor with an alternating voltage signal; detect a set of self-capacitance values across the substrate; and detect a stylus location of a stylus input for the conductive stylus tip on the touch sensor surface based on the set of self-capacitance values and the second set of self-capacitance values.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Inventor: Ilya Daniel Rosenberg
  • Publication number: 20240053831
    Abstract: One variation of a system for a human-computer interface includes: a substrate; a post; and a controller. The substrate includes: a first region including a drive electrode concentric with a normal axis; and a second region arranged opposite the first region. The second region includes a set of sense electrodes arranged: radially about the normal axis; along a first axis orthogonal to the normal axis; and along a second axis orthogonal to the normal axis and the first axis. The post is arranged over the first region. The controller is configured to: read a set of electrical values from the set of sense electrodes; and based on the set of electrical values, interpret a first displacement of the drive electrode relative the set of sense electrodes along the first axis, and interpret a second displacement of the drive electrode relative to the set of sense electrodes along the second axis.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 15, 2024
    Inventors: Ilya Daniel Rosenberg, Darren Lochun, Ninad Sathe
  • Publication number: 20240036694
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Application
    Filed: September 29, 2023
    Publication date: February 1, 2024
    Inventors: IIya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11887398
    Abstract: One variation of a system includes: a substrate including an aperture and a multi-layer inductor; and a cover layer arranged over the substrate and cooperating with the aperture to define a housing. Additionally, the system includes a fingerprint reader arranged within the housing and configured to permeate through the cover layer to scan a fingerprint applied over the cover layer. A magnetic element is arranged facing the multi-layer inductor and configured to inductively couple the multi-layer inductor. The system further includes a controller configured to: read electrical values from the multi-layer inductor; and register a fingerprint input on the cover layer based on the electrical values. Additionally, the controller can: read fingerprint values from the fingerprint reader to generate a fingerprint image; and trigger a first oscillating voltage across the multi-layer inductor to oscillate the cover layer in response to the fingerprint image deviating from a target fingerprint image.
    Type: Grant
    Filed: December 7, 2022
    Date of Patent: January 30, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11880506
    Abstract: One variation of a keyboard system includes: a substrate including an array of inductors; a tactile layer arranged over the substrate defining an array of key locations over the array of inductors; an array of magnetic elements, each arranged within the tactile layer at a key location configured to inductively couple to an adjacent inductor and configured to move relative to the adjacent inductor responsive to application of a force on the tactile layer at the key location; and a controller configured to read electrical values from the inductors. In response to detecting a change in electrical value at a first inductor, the controller also configured to: register a first keystroke of a first key type associated with a first key location defined over the first inductor; and drive an oscillating voltage across the first inductor to oscillate the tactile layer over the substrate during a haptic feedback cycle.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: January 23, 2024
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230406539
    Abstract: One variation of a tram system includes: a chassis; a latch configured to selectively engage a latch receiver mounted to an aircraft; an alignment feature adjacent the latch and configured to engage an alignment receiver mounted to the aircraft and to communicate acceleration and braking forces from the chassis into the aircraft; an optical sensor facing upwardly from the chassis; a drivetrain configured to accelerate and decelerate the chassis along a runway; and a controller configured to detect an optical fiducial arranged on the aircraft in optical images recorded by the optical sensor adjust a speed of the drivetrain to longitudinally align the alignment feature with the alignment receiver based on positions of the optical fiducial detected in the optical images, trigger the latch to engage the latch receiver once the aircraft has descended onto the chassis, and trigger the drivetrain to actively decelerate the chassis during a landing routine.
    Type: Application
    Filed: June 5, 2023
    Publication date: December 21, 2023
    Inventor: Ilya Daniel Rosenberg
  • Publication number: 20230400947
    Abstract: Facilitating dynamic adjustment of a click/unclick threshold corresponding to a force-based tactile sensor is presented herein. A system can comprise a tactile sensor comprising force-based sensor(s); and a motion detection component that can determine a rate of change of a movement that has been detected via a group of sensors comprising the force-based sensor(s), and based on the rate of change of the movement, modify a defined sensitivity of the force-based sensor(s) with respect to detection of a click and/or unclick event corresponding to the tactile sensor. Further, the motion detection component can decrease the defined sensitivity with respect to detection of the click and/or unclick event in response to the rate of change being determined to satisfy a defined condition representing an increase in the speed at which the stylus or the finger has moved across the tactile sensor.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 14, 2023
    Inventors: Tomer MOSCOVICH, Ilya Daniel ROSENBERG
  • Patent number: 11836316
    Abstract: One variation of a system for tracking stylus inputs on a touch sensor surface includes: a touch sensor surface, and a touch sensor arranged under the touch sensor surface. The touch sensor includes a substrate and a set of drive and sense electrode pairs. The system further includes an excitation inductor arranged under the touch sensor surface and a stylus. The stylus includes: a body; a conductive stylus tip; and a stylus inductor configured to inductively couple to the excitation inductor to induce a voltage at the conductive stylus tip. The system includes a controller configured to: drive the excitation inductor with an alternating voltage signal; detect a set of self-capacitance values across the substrate; and detect a stylus location of a stylus input for the conductive stylus tip on the touch sensor surface based on the set of self-capacitance values and the second set of self-capacitance values.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: December 5, 2023
    Assignee: Sensel, Inc.
    Inventor: Ilya Daniel Rosenberg
  • Publication number: 20230384861
    Abstract: One variation of a system includes a substrate including: a first layer including a first spiral trace coiled in a first direction; a second layer arranged below the first layer and including a second spiral trace coiled in a second direction and cooperating with the first spiral trace to form a multi-layer inductor; and a sensor layer including an array of drive and sense electrode pairs. The system also includes: a cover layer arranged over the substrate and defining a touch sensor surface; and a first magnetic element arranged below the substrate and defining a first polarity facing the multi-layer inductor. The system further includes a controller configured to drive an oscillating voltage across the multi-layer inductor to oscillate the substrate in response to detecting an input on the touch sensor surface based on electrical values from the set of drive and sense electrode pairs.
    Type: Application
    Filed: June 1, 2023
    Publication date: November 30, 2023
    Inventors: James Junus, Ninad Sathe, Shuangming Li, Ilya Daniel Rosenberg, John Aaron Zarraga, Eric Rosales
  • Patent number: 11829543
    Abstract: One variation of a method includes: defining a first capacitance gradient of capacitance thresholds spanning a capacitive touch sensor; defining a first pressure gradient of pressure thresholds spanning a pressure sensor; reading a capacitance value from the capacitive touch sensor proximal a first location; detecting presence of a first input at the first location in response to the capacitance value exceeding a capacitance threshold assigned to the first location; reading a pressure value from the pressure sensor proximal the first location; detecting presence of a second input proximal the first location in response to the pressure value exceeding a pressure threshold; in response to detecting the first input and detecting the second input: merging the first input and the second input into a confirmed touch input; and generating a first touch image representing the first location and the pressure value of the confirmed touch input.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 28, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Patent number: 11809669
    Abstract: Touch sensor technologies are provided. In some embodiments, a touch sensor device includes an array of conductive members. The touch sensor device also includes a first routing trace electrically coupled to a first conductive member of the array of conductive members. The touch sensor device also includes a second routing trace electrically coupled to a second conductive member of the array of conductive member. The first and second routing traces extend to a connector integrated into the touch sensor device. The touch sensor device further includes a resistor that electrically couples the first routing trace and the second routing trace. A third conductive member of the array of conductive members is placed between the first and second conductive members. By incorporating a resistor, density of conductive members (sense lines and/or drive lines) can be increased without increasing density of routing traces to the connector.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: November 7, 2023
    Assignee: SENSEL, INC.
    Inventors: Darren Lochun, Ilya Daniel Rosenberg
  • Patent number: 11809672
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: November 7, 2023
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20230350494
    Abstract: One variation of a method for modifying haptic feedback response includes, during a set-up period: at a calibration system, applying a target selection force, to a target location on a surface of a touch sensor; at the touch sensor, triggering vibration cycles across haptic actuators to oscillate the touch sensor surface; capturing a haptic waveform representing oscillations at the first target location on the surface during the vibration cycles; interpreting a vibration cycle for the haptic actuators corresponding to a target haptic intensity at the target location based on the haptic waveform. The method also includes, during a deployment period, following the set-up period: detecting a force magnitude for a touch input applied proximal the target location on the surface; and in response to the force magnitude exceeding the target selection force, triggering the vibration cycle at the haptic actuators to oscillate the surface at the target haptic intensity.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 2, 2023
    Inventors: Ninad Sathe, Vijay Rajanna, Ilya Daniel Rosenberg