Patents by Inventor Daniel Simons

Daniel Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408935
    Abstract: A method controls switching states of a multi-level converter with multiple modules. Each module has: terminals on a first and second side; controllable switches; and an energy store in series with a first switch in a first connection between the terminals. A second switch is arranged in a connection between the terminals. The control of the switching states is divided into a real-time and offline part. In the real-time part, for each time step: a voltage level is allocated to a voltage requirement; a total switching state is determined in a first switching table for the voltage level; and the total switching state is passed on as a control signal to the switches. In the offline part: a second switching table is calculated, resulting in accordance with a minimization of a cost function.
    Type: Application
    Filed: May 13, 2019
    Publication date: December 30, 2021
    Inventors: Eduard Specht, Stefan Goetz, Tomas Kacetl, Daniel Simon
  • Patent number: 11202575
    Abstract: The invention presents an apparatus (6) for characterization of a condition of a vessel (12) wall of a living being (2). The relationship between temporal blood pressure (621) and blood flow (622) measurements of pulsatile blood motion within the vessel (12) is an indication of the health of the vessel (12) wall. Furthermore, the invention discloses a system (1) comprising the apparatus (6), and a method (100) of characterizing the condition of vessel (12) walls.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 21, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Daniel Simon Anna Ruijters
  • Publication number: 20210338183
    Abstract: An adaptive X-ray anti-scatter device (20) for placement in the source-detector axis (22) of an X-ray imager (8) comprising:—an anti-scatter filter having a source orientable surface and a detector orientable surface, wherein the anti-scatter filter comprises a plurality of realignable slats (24) for absorbing incident X-rays, wherein the slats are separated by a plurality of interstitial portions (26); and—a first actively deformable member (26a) comprising a first set of one or more actively deformable actuators (28a, 28b) disposed across a first region of the first actively deformable member (26a), wherein one or more actively deformable actuators of the first set of one or more actively deformable actuators are configured to change the alignment of a corresponding of slat of the anti-scatter filter in relation to the source-detector axis, wherein at least a portion of each actuator of the first set of one or more actively deformable actuators is partially or fully recessed within the interstitial portions
    Type: Application
    Filed: September 26, 2019
    Publication date: November 4, 2021
    Inventors: Thijs ELENBAAS, Markus Johannes Harmen DEN HARTOG, Javier OLIVAN BESCOS, Gereon VOGTMEIER, William Edward Peter VAN DER STERREN, Daniël Simon Anna RUIJTERS
  • Publication number: 20210330388
    Abstract: The present invention relates to guidance during examinations or interventional procedures. In order to facilitate information provision in a medical environment such as an operation room or cathlab, an augmented reality display device (10) for medical equipment is provided that comprises a data input unit (12), a processing unit (20) and a display unit (22). The data input unit is configured to receive displayed operation parameters (14) of at least one medical appliance. The data input unit is also configured to receive relative location information (16) of at least one medical appliance in relation to the display unit and a viewing direction information (18) of the user. The processing unit is configured to detect if at least one of the medical appliances is in the user's field of view based on the relative location information and the viewing direction information. The processing unit is further configured to generate display data based on the operation parameters of the detected medical appliance.
    Type: Application
    Filed: September 5, 2019
    Publication date: October 28, 2021
    Inventors: Markus Johannes Harmen DEN HARTOG, Javier OLIVAN BESCOS, Thijs ELENBAAS, William Edward Peter VAN DER STERREN, Daniël Simon Anna RUIJTERS
  • Patent number: 11151646
    Abstract: A system and method relating to providing a program executable via an icon provided in one or more pages displayed by a user interface displaying content associated with an item available for purchase via a transaction platform associated with a merchant. In response to an interaction with the icon, a first form is generated in the user interface to collect data associated with a loan application associated with a transaction corresponding to the item. In response to receiving a submission of the data associated with the loan application, a determination is made to approve a loan associated with the item. A token including an identifier corresponding to the loan and the transaction is generated, such that the token can be processed to enable completion of the transaction.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 19, 2021
    Assignee: LON OPERATIONS, LLC
    Inventor: Daniel Simon
  • Patent number: 11133164
    Abstract: A method of analysis is disclosed comprising providing a sample on an insulating substrate such as a petri dish 4 and contacting e.g. the rear surface of the insulating substrate with a first electrode 9. The method further comprises contacting the sample with a second electrode 2 and applying an AC or RF voltage to the first and second electrodes 9,2 in order to generate an aerosol from the sample.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: September 28, 2021
    Assignee: Micromass UK Limited
    Inventors: Steven Derek Pringle, Lajos Godorhazy, Daniel Simon, Daniel Szalay, Zoltan Takats, Tamas Karancsi
  • Patent number: 11123025
    Abstract: An apparatus for medical imaging of a patient, including an object of interest, is provided. The apparatus comprises a patient support unit, a processor, and a display. The patient support unit is configured to receive a patient. The processor is configured to receive scout images of the patient acquired in respective positions of the apparatus. Each respective position is represented by a position parameter. The processor is further configured to select at least one iso-centering image from the scout images by geometrical calculation using the position parameter of each scout image and a position parameter representing a present position of the apparatus. The processor is further configured to adapt the appearance of the at least one iso-centering image according to the present position of the apparatus. The display is configured to present the at least one adapted iso-centering image.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 21, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Simon Anna Ruijters, Fred Simon Berend Van Nijnatten, Javier Olivan Bescos, Ronaldus Petrus Johannes Hermans, Adrie Baselmans, Ina Klein Teeselink, Jeroen Gerard Scheepens, Walter Everard Carels, Thijs Grunhagen
  • Patent number: 11116940
    Abstract: The invention addresses the problem of correctly positioning a catheter and reducing radiation doses. It relates to an X-ray imaging system (1) for a robotic catheter, comprising said catheter (3), and a processing unit (5) for receiving X-ray images of a patient environment (15). By being adapted to receive one or more auxiliary information items and using said information for determining the catheter position, the processing unit does not entirely have to rely on a large number of scanned image data, thus helping to reduce radiation while correctly delivering the catheter position as a function of as few as a single image, preferably 2D, and said one auxiliary information items. Further, said processing unit allows for at least one of rendering an image and provide said image to a visualization device (21), and providing feedback, e.g. steering commands, to said robotic catheter.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: September 14, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Simon Anna Ruijters, Sander Hans Denissen, Michael Grass, Erik Martinus Hubertus Petrus Van Dijk, Dirk Dijkkamp, Maikel Hendriks, Erik Rene Kieft, Marco Verstege
  • Publication number: 20210269505
    Abstract: The present invention relates to TWEAK-receptor agonists for use in the treatment of a cancer, wherein the TWEAK-receptor agonist is combined with immunotherapy of the cancer. The TWEAK-receptor agonist preferably is a multivalent ligand that causes clustering of TWEAK-receptors at the cell surface. A suitable TWEAK-receptor agonist is an agonistic anti-Fn14 antibody. The TWEAK-receptor agonist and immunotherapy be can further be combined with a SMAC mimetic in the treatment of cancer. The TWEAK-receptor agonist is useful, optionally in combination with a SMAC mimetic, to prevent resistance of a cancer to immunotherapy and/or to treat a cancer comprising tumor cells that are resistant to immunotherapy.
    Type: Application
    Filed: June 28, 2019
    Publication date: September 2, 2021
    Applicant: Stichting Het Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis
    Inventors: Daniel Simon Peeper, Thomas Kuilman, David Willem Vredevoogd
  • Publication number: 20210272789
    Abstract: A method is disclosed comprising obtaining or acquiring chemical or other non-mass spectrometric data from one or more regions of a target (2) using a chemical sensor (20). The chemical or other non-mass spectrometric data may be used to determine one or more regions of interest of the target (2). An ambient ionisation ion source 1 may then be used to generate aerosol, smoke or vapour (5) from one or more regions of the target (2).
    Type: Application
    Filed: May 7, 2021
    Publication date: September 2, 2021
    Inventors: Steven Derek PRINGLE, Emrys JONES, Michael Raymond MORRIS, Julia BALOG, James Ian LANGRIDGE, Keith RICHARDSON, Daniel SIMON, Lajos GODORHAZY, Daniel SZALAY, Zoltan TAKATS
  • Patent number: 11094519
    Abstract: An apparatus for performing ambient ionisation mass and/or ion mobility spectrometry is disclosed. The apparatus comprises a substantially cylindrical, tubular, rod-shaped, coil-shaped, helical or spiral-shaped collision assembly; and a first device arranged and adapted to direct analyte, smoke, fumes, liquid, gas, surgical smoke, aerosol or vapour onto said collision assembly.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: August 17, 2021
    Assignee: Micromass UK Limited
    Inventors: Tamas Karancsi, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Steven Derek Pringle, Emrys Jones, Ian Trivett, Stephen O'Brien, Anthony Hesse, Matt Henderson, Alvin Chua, Zoltan Takáts
  • Patent number: 11081329
    Abstract: A method of mass spectrometry or ion mobility spectrometry is disclosed comprising: providing an analyte; supplying a matrix compound to said analyte such that said analyte dissolves in said matrix; forming first droplets of the dissolved analyte; and colliding said first droplets with a collision surface. The use of matrix improves the analyte ion signal.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 3, 2021
    Assignee: Micromass UK Limited
    Inventors: Emrys Jones, Tamas Karancsi, Steven Derek Pringle, Julia Balog, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Zoltan Takats
  • Publication number: 20210233611
    Abstract: The present invention relates to the classification of prostate cancers using samples from patients. Classification is achieved using a novel analysis method that uses less computing power than methods of the prior art. In particular, the invention provides new methods for classifying cancers to make a determination of risk of cancer progression (for example in early cancer), to identify patient populations that may be susceptible to particular treatments and to present opportunities (for example to provide tailored treatment regimens), or to identify patient populations that do not require treatment. The methods of the invention may include identifying potentially aggressive cancers to determine which cancers are or will become aggressive (and hence require treatment) and which will remain indolent (and will therefore not require treatment). The present invention is therefore useful to identify a patient's prognosis and identify those with good or poor prognoses.
    Type: Application
    Filed: April 12, 2019
    Publication date: July 29, 2021
    Inventors: Daniel Simon Brewer, Bogdan-Alexandru Luca, Vincent Moulton, Colin Cooper
  • Patent number: 11049708
    Abstract: An apparatus for performing ambient ionisation mass and/or ion mobility spectrometry is disclosed. The apparatus comprises a substantially cylindrical, tubular, rod-shaped, coil-shaped, helical or spiral-shaped collision assembly; and a first device arranged and adapted to direct analyte, smoke, fumes, liquid, gas, surgical smoke, aerosol or vapour onto said collision assembly.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 29, 2021
    Assignee: Micromass UK Limited
    Inventors: Tamas Karancsi, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Steven Derek Pringle, Emrys Jones, Ian Trivett, Stephen O'Brien, Anthony Hesse, Matt Henderson, Alvin Chua, Zoltan Takáts
  • Patent number: 11037774
    Abstract: A method is disclosed comprising obtaining physical or other non-mass spectrometric data from one or more regions of a target using a probe. The physical or other non-mass spectrometric data may be used to determine one or more regions of interest of the target. An ambient ionisation ion source may then used to generate an aerosol, smoke or vapour from one or more regions of the target.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 15, 2021
    Assignee: Micromass UK Limited
    Inventors: Steven Derek Pringle, Emrys Jones, Michael Raymond Morris, Julia Balog, James Ian Langridge, Keith Richardson, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Zoltan Takats
  • Patent number: 11031222
    Abstract: A method is disclosed comprising obtaining or acquiring chemical or other non-mass spectrometric data from one or more regions of a target using a chemical sensor. The chemical or other non-mass spectrometric data may be used to determine one or more regions of interest of the target. An ambient ionisation ion source may then be used to generate aerosol, smoke or vapour from one or more regions of the target.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 8, 2021
    Assignee: Micromass UK Limited
    Inventors: Steven Derek Pringle, Emrys Jones, Michael Raymond Morris, Julia Balog, James Ian Langridge, Keith Richardson, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Zoltan Takats
  • Patent number: 11031221
    Abstract: A method of mass spectrometry or ion mobility spectrometry is disclosed comprising: providing an analyte; supplying a matrix compound to said analyte such that said analyte dissolves in said matrix; forming first droplets of the dissolved analyte; and colliding said first droplets with a collision surface. The use of matrix improves the analyte ion signal.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 8, 2021
    Assignee: Micromass UK Limited
    Inventors: Emrys Jones, Tamas Karancsi, Steven Derek Pringle, Julia Balog, Daniel Simon, Lajos Godorhazy, Daniel Szalay, Zoltan Takats
  • Patent number: 11031223
    Abstract: A method of analysis is disclosed comprising providing a sample on an insulating substrate such as a petri dish (4) and contacting e.g. the rear surface of the insulating substrate with a first electrode (9). The method further comprises contacting the sample with a second electrode (2) and applying an AC or RF voltage to the first and second electrodes (9,2) in order to generate an aerosol from the sample.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: June 8, 2021
    Assignee: Micromass UK Limited
    Inventors: Steven Derek Pringle, Lajos Godorhazy, Daniel Simon, Daniel Szalay, Zoltan Takats, Tamas Karancsi
  • Patent number: D925277
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Epoca International, Inc.
    Inventors: Daniel Simon Keating, Brian Melzer
  • Patent number: D925659
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Epoca International, Inc.
    Inventors: Daniel Simon Keating, Brian Melzer