Patents by Inventor Daniel Yohannes
Daniel Yohannes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12317757Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: GrantFiled: July 24, 2023Date of Patent: May 27, 2025Assignee: SeeQC, Inc.Inventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaeskii, Igor Vernik, John Vivalda, Jason Walter
-
Patent number: 12098949Abstract: Superconducting nanowire single photon detectors have recently been developed for a wide range of applications, including imaging and communications. An improved detection system is disclosed, whereby the detectors are monolithically integrated on the same chip with Josephson junctions for control and data processing. This enables an enhanced data rate, thereby facilitating several new and improved applications. A preferred embodiment comprises integrated digital processing based on single-flux-quantum pulses. An integrated multilayer fabrication method for manufacturing these integrated detectors is also disclosed. Preferred examples of systems comprising such integrated nanowire photon detectors include a time-correlated single photon counter, a quantum random number generator, an integrated single-photon imaging array, a sensitive digital communication receiver, and quantum-key distribution for a quantum communication system.Type: GrantFiled: September 1, 2023Date of Patent: September 24, 2024Assignee: SeeQC, Inc.Inventors: Amir Jafari-Salim, Daniel Yohannes, Oleg A. Mukhanov, Alan M. Kadin
-
Patent number: 11991935Abstract: Materials and methods are disclosed for fabricating superconducting integrated circuits for quantum computing at millikelvin temperatures, comprising both quantum circuits and classical control circuits, which may be located on the same integrated circuit or on different chips of a multi-chip module. The materials may include components that reduce defect densities and increase quantum coherence times. Multilayer fabrication techniques provide low-power and a path to large scale computing systems. An integrated circuit system for quantum computing is provided, comprising: a substrate; a kinetic inductance layer having a kinetic inductance of at least 5 pH/square; a plurality of stacked planarized superconducting layers and intervening insulating layers, formed into a plurality of Josephson junctions having a critical current of less than 100 ?A/?m2; and a resistive layer that remains non-superconducting at a temperature below 1 K, configured to damp the plurality of Josephson junctions.Type: GrantFiled: November 21, 2022Date of Patent: May 21, 2024Assignee: SeeQC, Inc.Inventors: Daniel Yohannes, Mario Renzullo, John Vivalda, Alexander Kirichenko
-
Publication number: 20230380302Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: ApplicationFiled: July 24, 2023Publication date: November 23, 2023Inventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaeskii, Igor Vernik, John Vivalda, Jason Walter
-
Publication number: 20230337553Abstract: Materials and methods are disclosed for fabricating superconducting integrated circuits for quantum computing at millikelvin temperatures, comprising both quantum circuits and classical control circuits, which may be located on the same integrated circuit or on different chips of a multi-chip module. The materials may include components that reduce defect densities and increase quantum coherence times. Multilayer fabrication techniques provide low-power and a path to large scale computing systems. An integrated circuit system for quantum computing is provided, comprising: a substrate; a kinetic inductance layer having a kinetic inductance of at least 5 pH/square; a plurality of stacked planarized superconducting layers and intervening insulating layers, formed into a plurality of Josephson junctions having a critical current of less than 100 ?A/?m2; and a resistive layer that remains non-superconducting at a temperature below 1 K, configured to damp the plurality of Josephson junctions.Type: ApplicationFiled: November 21, 2022Publication date: October 19, 2023Inventors: Daniel Yohannes, Mario Renzullo, John Vivalda, Alexander Kirichenko
-
Patent number: 11747196Abstract: Superconducting nanowire single photon detectors have recently been developed for a wide range of applications, including imaging and communications. An improved detection system is disclosed, whereby the detectors are monolithically integrated on the same chip with Josephson junctions for control and data processing. This enables an enhanced data rate, thereby facilitating several new and improved applications. A preferred embodiment comprises integrated digital processing based on single-flux-quantum pulses. An integrated multilayer fabrication method for manufacturing these integrated detectors is also disclosed. Preferred examples of systems comprising such integrated nanowire photon detectors include a time-correlated single photon counter, a quantum random number generator, an integrated single-photon imaging array, a sensitive digital communication receiver, and quantum-key distribution for a quantum communication system.Type: GrantFiled: July 11, 2022Date of Patent: September 5, 2023Assignee: SeeQC, Inc.Inventors: Amir Jafari-Salim, Daniel Yohannes, Oleg A. Mukhanov, Alan M. Kadin
-
Patent number: 11711985Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: GrantFiled: September 13, 2021Date of Patent: July 25, 2023Assignee: SeeQC IncInventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaevskii, Igor Vernik, John Vivalda, Jason Walter
-
Publication number: 20220393089Abstract: Materials and methods are disclosed for fabricating superconducting integrated circuits for quantum computing at millikelvin temperatures, comprising both quantum circuits and classical control circuits, which may be located on the same integrated circuit or on different chips of a multi-chip module. The materials may include components that reduce defect densities and increase quantum coherence times. Multilayer fabrication techniques provide low-power and a path to large scale computing systems. An integrated circuit system for quantum computing is provided, comprising: a substrate; a kinetic inductance layer having a kinetic inductance of at least 5 pH/square; a plurality of stacked planarized superconducting layers and intervening insulating layers, formed into a plurality of Josephson junctions having a critical current of less than 100 ?A/?m2; and a resistive layer that remains non-superconducting at a temperature below 1 K, configured to damp the plurality of Josephson junctions.Type: ApplicationFiled: June 2, 2021Publication date: December 8, 2022Inventors: Daniel Yohannes, Mario Renzullo, John Vivalda, Alexander Kirichenko
-
Patent number: 11508896Abstract: Materials and methods are disclosed for fabricating superconducting integrated circuits for quantum computing at millikelvin temperatures, comprising both quantum circuits and classical control circuits, which may be located on the same integrated circuit or on different chips of a multi-chip module. The materials may include components that reduce defect densities and increase quantum coherence times. Multilayer fabrication techniques provide low-power and a path to large scale computing systems. An integrated circuit system for quantum computing is provided, comprising: a substrate; a kinetic inductance layer having a kinetic inductance of at least 5 pH/square; a plurality of stacked planarized superconducting layers and intervening insulating layers, formed into a plurality of Josephson junctions having a critical current of less than 100 ?A/?m2; and a resistive layer that remains non-superconducting at a temperature below 1 K, configured to damp the plurality of Josephson junctions.Type: GrantFiled: June 2, 2021Date of Patent: November 22, 2022Assignee: Seeqc, inc.Inventors: Daniel Yohannes, Mario Renzullo, John Vivalda, Alexander Kirichenko
-
Publication number: 20220237495Abstract: The technology disclosed in this patent document can be implemented to combine quantum computing, classical qubit control/readout, and classical digital computing in a scalable computing system based on superconducting qubits and special interconnection designs for connecting hardware components within a multi-stage cryogenic system to provide fast communications between the quantum computing module and its controller while allowing efficient management of wiring with other modules.Type: ApplicationFiled: October 14, 2021Publication date: July 28, 2022Inventors: Daniel Yohannes, Igor Vernik, Caleb Jordan, Patrick Truitt, Alex Kirichenko, Amir Jafari Salim, Naveen Katam, Oleg Mukhanov
-
Patent number: 11385099Abstract: Superconducting nanowire single photon detectors have recently been developed for a wide range of applications, including imaging and communications. An improved detection system is disclosed, whereby the detectors are monolithically integrated on the same chip with Josephson junctions for control and data processing. This enables an enhanced data rate, thereby facilitating several new and improved applications. A preferred embodiment comprises integrated digital processing based on single-flux-quantum pulses. An integrated multilayer fabrication method for manufacturing these integrated detectors is also disclosed. Preferred examples of systems comprising such integrated nanowire photon detectors include a time-correlated single photon counter, a quantum random number generator, an integrated single-photon imaging array, a sensitive digital communication receiver, and quantum-key distribution for a quantum communication system.Type: GrantFiled: June 22, 2018Date of Patent: July 12, 2022Assignee: SeeQC Inc.Inventors: Amir Jafari-Salim, Daniel Yohannes, Oleg A. Mukhanov, Alan M. Kadin
-
Publication number: 20210408355Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: ApplicationFiled: September 13, 2021Publication date: December 30, 2021Inventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaeskii, Igor Vernik, John Vivalda, Jason Walter
-
Patent number: 11121302Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: GrantFiled: October 11, 2019Date of Patent: September 14, 2021Inventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaeskii, Igor Vernik, John Vivalda, Jason Walter
-
Patent number: 10829519Abstract: Angiotensin (1-7) analogs are provided. Also provided are methods of making such analogs methods for using analogs as therapeutic compositions such as, for example, treatment cancer.Type: GrantFiled: September 16, 2016Date of Patent: November 10, 2020Assignees: WAKE FOREST UNIVERSITY HEALTH SCIENCES, TENSIVE CONTROLS, INC.Inventors: Patricia Gallagher, Ann Tallant, Daniel Yohannes, Kenneth A. Gruber
-
Patent number: 10833243Abstract: Superconducting integrated circuits require several wiring layers to distribute bias and signals across the circuit, which must cross each other both with and without contacts. All wiring lines and contacts must be fully superconducting, and in the prior art each wiring layer comprises a single metallic thin film. An alternative wiring layer is disclosed that comprises sequential layers of two or more different metals. Such a multi-metallic wiring layer may offer improved resistance to impurity diffusion, better surface passivation, and/or reduction of stress, beyond that which is attainable with a single-metallic wiring layer. The resulting process leads to improved margin and yield in an integrated circuit comprising a plurality of Josephson junctions. Several preferred embodiments are disclosed, for both planarized and non-planarized processes.Type: GrantFiled: August 17, 2017Date of Patent: November 10, 2020Assignee: SeeQC Inc.Inventors: Sergey K. Tolpygo, Denis Amparo, Richard Hunt, John Vivalda, Daniel Yohannes
-
Publication number: 20200262794Abstract: Provided herein are compounds of Formula I and Formula II, and compositions comprising the same, as well as methods of use thereof for treating kidney stones (e.g., inhibiting the formation of oxalate kidney stones; treating primary hyperoxaluria), inhibiting the production of glyoxylate and/or oxalate, and/or inhibiting glycolate oxidase (GO).Type: ApplicationFiled: December 7, 2016Publication date: August 20, 2020Inventors: W. Todd Lowther, Ross P. Holmes, Daniel Yohannes
-
Publication number: 20200261419Abstract: Provided herein are methods of treatment for kidney stones, e.g., for controlling or inhibiting the formation of calcium oxalate kidney stones by inhibiting the production of glyoxylate and/or oxalate, treatment of primary hyperoxaluria, etc. In some embodiments, methods comprise administering to a subject in need thereof, in combination, an inhibitor of hydroxyproline dehydrogenase (HYPDH), an inhibitor of glycolate oxidase (GO), and/or another agent for the treatment of kidney stones. Compositions for such use or the use of active agents in the manufacture of a medicament for the treatment of kidney stones are also provided.Type: ApplicationFiled: December 7, 2016Publication date: August 20, 2020Applicant: Wake Forest University Health SciencesInventors: W. Todd Lowther, Ross P. Holmes, Daniel Yohannes
-
Patent number: 10716770Abstract: The present invention relates to compounds that modulate nicotinic receptors as non-competitive antagonists, methods for use, and their pharmaceutical compositions.Type: GrantFiled: April 15, 2019Date of Patent: July 21, 2020Assignee: Catalyst Biosciences, Inc.Inventors: Srinivasa Rao Akireddy, Balwinder Singh Bhatti, Ronald Joseph Heemstra, Jason Speake, Daniel Yohannes, Matt S. Melvin, Yunde Xiao
-
Publication number: 20200119251Abstract: A method for bonding two superconducting integrated circuits (“chips”), such that the bonds electrically interconnect the chips. A plurality of indium-coated metallic posts may be deposited on each chip. The indium bumps are aligned and compressed with moderate pressure at a temperature at which the indium is deformable but not molten, forming fully superconducting connections between the two chips when the indium is cooled down to the superconducting state. An anti-diffusion layer may be applied below the indium bumps to block reaction with underlying layers. The method is scalable to a large number of small contacts on the wafer scale, and may be used to manufacture a multi-chip module comprising a plurality of chips on a common carrier. Superconducting classical and quantum computers and superconducting sensor arrays may be packaged.Type: ApplicationFiled: October 11, 2019Publication date: April 16, 2020Inventors: Daniel Yohannes, Denis Amparo, Oleksandr Chernyashevskyy, Oleg Mukhanov, Mario Renzullo, Andrei Talalaeskii, Igor Vernik, John Vivalda, Jason Walter
-
Patent number: 10562844Abstract: Provided herein are compounds of Formula (I), Formula (II), and Formula (III), and compositions comprising the same, as well as methods of use thereof for controlling or inhibiting the formation of calcium oxalate kidney stones, inhibiting the production of glyoxylate and/or oxalate, and/or inhibiting hydroxyproline dehydrogenase (HYPDH).Type: GrantFiled: January 25, 2016Date of Patent: February 18, 2020Assignees: Wake Forest University Health Sciences, UAB Research FoundationInventors: W. Todd Lowther, Ross P. Holmes, Daniel Yohannes