Patents by Inventor Daniele Mauri

Daniele Mauri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11127422
    Abstract: Aspects of the present disclosure generally relate to magnetic recording heads of magnetic recording devices. A magnetic read head includes a first pinning layer magnetically oriented in a first direction, and a second pinning layer formed above the first pinning layer and magnetically oriented in a second direction that is opposite of the first direction. The magnetic read head includes a rear hard bias disposed outwardly of one or more of the first pinning layer relative or the second pinning layer. The rear hard bias is magnetically oriented to generate a magnetic field in a bias direction. The bias direction points in the same direction as the first direction or the second direction. The magnetic read head does not include an antiferromagnetic (AFM) layer between a lower shield and an upper shield.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: September 21, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Xiaoyong Liu, Ji Li, Changhe Shang, Daniele Mauri, Yukimasa Okada
  • Patent number: 11087785
    Abstract: The present disclosure generally related to read heads having dual free layer (DFL) sensors. The read head has a sensor disposed between two shields. The sensor is a DFL sensor and has a surface at the media facing surface (MFS). Behind the DFL sensor, and away from the MFS, is a rear hard bias (RHB) structure. The RHB structure is disposed between the shields as well. In between the DFL sensor and the RHB structure is insulating material. The RHB is disposed on the insulating material. The RHB includes a RHB seed layer as well as a RHB bulk layer. The RHB seed layer has a thickness of between 26 Angstroms and 35 Angstroms. The RHB seed layer ensures the read head has a strong RHB magnetic field that can be uniformly applied.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: August 10, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Ming Mao, Daniele Mauri, Chen-Jung Chien, Guanxiong Li
  • Publication number: 20210201943
    Abstract: The present disclosure generally relates to a Wheatstone bridge array that has four resistors. Each resistor includes a plurality of TMR films. Each resistor has identical TMR films. The TMR films of two resistors have reference layers that have an antiparallel magnetic orientation relative to the TMR films of the other two resistors. To ensure the antiparallel magnetic orientation, the TMR films are all formed simultaneously and annealed in a magnetic field simultaneously. Thereafter, the TMR films of two resistors are annealed a second time in a magnetic field while the TMR films of the other two resistors are not annealed a second time.
    Type: Application
    Filed: May 20, 2020
    Publication date: July 1, 2021
    Inventors: Yuankai ZHENG, Ming MAO, Daniele MAURI, Chih-Ching HU, Chen-Jung CHIEN
  • Patent number: 10957346
    Abstract: Disclosed herein are magnetic recording devices and methods of using them. A magnetic recording device comprises a main pole extending to an air-bearing surface (ABS), a trailing shield extending to the ABS, a write-field-enhancing structure disposed between and coupled to the main pole and the trailing shield at the ABS, a write coil configured to magnetize the main pole, a write current control circuit coupled to the write coil and configured to apply a write current to the write coil, wherein the write current comprises a write pulse, and a bias current control circuit coupled to the write-field-enhancing structure and configured to apply a bias current to the write-field-enhancing structure, wherein the bias current comprises a driving pulse offset in time from the write pulse by a delay, wherein the delay substantially coincides with an expected magnetization switch-time lag of a free layer of the write-field-enhancing structure.
    Type: Grant
    Filed: March 29, 2020
    Date of Patent: March 23, 2021
    Assignee: Western Digital Technologies, Inc.
    Inventors: Gonçalo Marcos Baião De Albuquerque, Yunfei Ding, Alexander Goncharov, Kuok San Ho, Daniele Mauri, Goran Mihajlovic, Suping Song, Petrus Antonius Van Der Heijden
  • Publication number: 20210063503
    Abstract: A tunneling magnetoresistance (TMR) sensor device is disclosed that includes one or more TMR resistors. The TMR sensor device comprises a first TMR resistor comprising a first TMR film, a second TMR resistor comprising a second TMR film different than the first TMR film, a third TMR resistor comprising the second TMR film, and a fourth TMR resistor comprising the first TMR film. The first and fourth TMR resistors are disposed in a first plane while the second and third TMR resistors are disposed in a second plane different than the first plane. The first TMR film comprises a synthetic anti-ferromagnetic pinned layer having a magnetization direction of a reference layer orthogonal to a magnetization direction a free layer. The second TMR film comprises a double synthetic anti-ferromagnetic pinned layer having a magnetization direction of a reference layer orthogonal to a magnetization direction of a free layer.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 4, 2021
    Inventors: Chih-Ching HU, Yung-Hung WANG, Ming MAO, Daniele MAURI, Ming JIANG
  • Publication number: 20210063507
    Abstract: The present disclosure generally relates to a Wheatstone bridge array that has four resistors. Each resistor includes a plurality of TMR structures. Two resistors have identical TMR structures. The remaining two resistors also have identical TMR structures, though the TMR structures are different from the other two resistors. Additionally, the two resistors that have identical TMR structures have a different resistance area as compared to the remaining two resistors that have identical TMR structures. Therefore, the working bias field for the Wheatstone bridge array is non-zero.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 4, 2021
    Inventors: Yuankai ZHENG, Christian KAISER, Zhitao DIAO, Chih-Ching HU, Chen-jung CHIEN, Yung-Hung WANG, Dujiang WAN, Ronghui ZHOU, Ming MAO, Ming JIANG, Daniele MAURI
  • Publication number: 20210063505
    Abstract: A method of fabricating a TMR based magnetic sensor in a Wheatstone configuration includes conducting a first anneal of a magnetic tunnel junction (MTJ) and conducting a second anneal of the MTJ. The MTJ includes a first antiferromagnetic (AFM) pinning layer, a pinned layer over the first AFM pinning layer, an anti-parallel coupled layer over the pinned layer, a reference layer over the anti-parallel coupled layer, a barrier layer over the reference layer, a free layer over the barrier layer, and a second antiferromagnetic pinning layer over the free layer. The first anneal of the MTJ sets the first AFM pinning layer, the pinned layer, the free layer, and the second AFM pinning layer in a first magnetization direction. The second anneal of the MTJ resets the free layer and the second AFM pinning layer in a second magnetization direction. An operating field range of the TMR based magnetic sensor is over ±100 Oe.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 4, 2021
    Inventors: Daniele MAURI, Yuankai ZHENG, Lei WANG, Christian KAISER
  • Publication number: 20210063500
    Abstract: Embodiments of the present disclosure generally relate to a large field range TMR sensor of magnetic tunnel junctions (MTJs) with a free layer having an intrinsic anisotropy. In one embodiment, a tunnel magnetoresistive (TMR) based magnetic sensor in a Wheatstone configuration includes at least one MTJ. The MTJ includes a free layer having an intrinsic anisotropy produced by deposition at a high oblique angle from normal. Magnetic domain formations within the free layer can be further controlled by a pinned layer canted at an angle to the intrinsic anisotropy of the free layer, by a hard bias element, by shape anisotropy, or combinations thereof.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 4, 2021
    Inventors: Daniele MAURI, Alexander M. ZELTSER, Goncalo BAIAO DE ALBUQUERQUE, Yuankai ZHENG, Christian KAISER
  • Publication number: 20210063502
    Abstract: A tunneling magnetoresistance (TMR) sensor device is disclosed that includes four or more TMR resistors. The TMR sensor device comprises a first TMR resistor comprising a first TMR film, a second TMR resistor comprising a second TMR film different than the first TMR film, a third TMR resistor comprising the second TMR film, and a fourth TMR resistor comprising the first TMR film. The first, second, third, and fourth TMR resistors are disposed in the same plane. The first TMR film comprises a synthetic anti-ferromagnetic pinned layer having a magnetization direction of the reference layer orthogonal to a free layer. The second TMR film comprises a double synthetic anti-ferromagnetic pinned layer having a magnetization direction of the reference layer orthogonal to the magnetization of a free layer, but opposite to the magnetization direction of the reference layer of the first TMR film.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 4, 2021
    Inventors: Chih-Ching HU, Yung-Hung WANG, Ann Lorraine CARVAJAL, Ming MAO, Chen-Jung CHIEN, Yuankai ZHENG, Ronghui ZHOU, Dujiang WAN, Carlos CORONA, Daniele MAURI, Ming JIANG
  • Publication number: 20210063508
    Abstract: The present disclosure generally relates to a Wheatstone bridge that includes a plurality of resistors comprising dual free layer (DFL) TMR structures. The DFL TMR structures include one or more hard bias structures on the side of DLF. Additionally, one or more soft bias structures may also be present on a side of the DFL. Two resistors will have identical hard bias material while two other resistors will have hard bias material that is identical to each other, yet different when compared to the first two resistors. The hard bias materials will provide opposite magnetizations that will provide opposite bias fields that result in two different magnetoresistance responses for the DFL TMR.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 4, 2021
    Inventors: Chih-Ching HU, Yung-Hung WANG, Yuankai ZHENG, Chen-jung CHIEN, Ming MAO, Daniele MAURI, Ming JIANG
  • Publication number: 20210063509
    Abstract: The present disclosure generally relates to a Wheatstone bridge that has four resistors. Each resistor includes a plurality of TMR structures. Two resistors have identical TMR structures. The remaining two resistors also have identical TMR structures, though the TMR structures are different from the other two resistors. Additionally, the two resistors that have identical TMR structures each have an additional non-TMR resistor as compared to the remaining two resistors that have identical TMR structures. Therefore, the working bias field for the Wheatstone bridge is non-zero.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 4, 2021
    Inventors: Yung-Hung WANG, Daniele MAURI, Ming MAO, Chen-jung CHIEN, Yuankai ZHENG, Chih-Ching HU, Carlos CORONA, Matthew STEVENSON, Ming JIANG
  • Publication number: 20210063504
    Abstract: A tunneling magnetoresistance (TMR) sensor device is disclosed that includes one or more TMR sensors. The TMR sensor device comprises a first resistor comprising a first TMR film, a second resistor comprising a second TMR film different than the first TMR film, a third resistor comprising the second TMR film, and a fourth resistor comprising the first TMR film. The first TMR film comprises a reference layer having a first magnetization direction anti-parallel to a second magnetization direction of a pinned layer. The second TMR film comprises a reference layer having a first magnetization direction parallel to a second magnetization direction of a first pinned layer, and a second pinned layer having a third magnetization direction anti-parallel to the first magnetization direction of the reference layer and the second magnetization direction of the first pinned layer.
    Type: Application
    Filed: December 18, 2019
    Publication date: March 4, 2021
    Inventors: Yuankai ZHENG, Christian KAISER, Zhitao DIAO, Chih-Ching HU, Chen-Jung CHIEN, Yung-Hung WANG, Dujiang WAN, Ronghui ZHOU, Ming MAO, Ming JIANG, Daniele MAURI
  • Publication number: 20210055360
    Abstract: Embodiments of the present disclosure generally relate to a sensor of magnetic tunnel junctions (MTJs) with shape anisotropy. In one embodiment, a tunnel magnetoresistive (TMR) based magnetic sensor in a Wheatstone configuration includes at least one magnetic tunnel junctions (MTJ). The MTJ includes a free layer having a first edge and a second edge. The free layer has a thickness of about 100 ? or more. The free layer has a width and a height with a width-to-height aspect ratio of about 4:1 or more. The MTJ has a first hard bias element positioned proximate the first edge of the free layer and a second hard bias element positioned proximate the second edge of the free layer.
    Type: Application
    Filed: December 27, 2019
    Publication date: February 25, 2021
    Inventors: Daniele MAURI, Lei WANG, Yuankai ZHENG, Christian KAISER, Chih-Ching HU, Ming MAO, Ming JIANG, Petrus Antonius VAN DER HEIJDEN
  • Publication number: 20200349967
    Abstract: Disclosed herein are magnetic recording devices and methods of using them. A magnetic recording device comprises a main pole extending to an air-bearing surface (ABS), a trailing shield extending to the ABS, a write-field-enhancing structure disposed between and coupled to the main pole and the trailing shield at the ABS, a write coil configured to magnetize the main pole, a write current control circuit coupled to the write coil and configured to apply a write current to the write coil, wherein the write current comprises a write pulse, and a bias current control circuit coupled to the write-field-enhancing structure and configured to apply a bias current to the write-field-enhancing structure, wherein the bias current comprises a driving pulse offset in time from the write pulse by a delay, wherein the delay substantially coincides with an expected magnetization switch-time lag of a free layer of the write-field-enhancing structure.
    Type: Application
    Filed: March 29, 2020
    Publication date: November 5, 2020
    Applicant: Western Digital Technologies, Inc.
    Inventors: Gonçalo Marcos Baião DE ALBUQUERQUE, Yunfei DING, Alexander GONCHAROV, Kuok San HO, Daniele MAURI, Goran MIHAJLOVIC, Suping SONG, Petrus Antonius VAN DER HEIJDEN
  • Patent number: 10777222
    Abstract: A hybrid read head structure for two-dimensional magnetic recording (TDMR) in a disk drive has two stacked current-perpendicular-to-the plane magnetoresistive (CPP-MR) read heads or sensors substantially aligned with one another in the along-the track direction to enable both sensors to read data from the same data track. The structure is a hybrid structure formed on the disk drive slider with the lower sensor being a dual free layer (DFL) or scissoring type of CPP-MR sensor and the upper sensor being a single free layer (SFL) type of CPP-MR sensor.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: September 15, 2020
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Xiaoyong Liu, Chih-Ching Hu, Daniele Mauri, Ming Mao, Guanxiong Li, Yukimasa Okada, Ying Hong
  • Patent number: 10720570
    Abstract: Magnetic sensors using spin Hall effect and methods for fabricating same are provided. One such magnetic sensor includes a spin Hall layer including an electrically conductive, non-magnetic material, a magnetic free layer adjacent to the spin Hall layer, a pair of push terminals configured to enable an electrical current to pass through the magnetic free layer and the spin Hall layer in a direction that is perpendicular to a plane of the free and spin Hall layers, and a pair of sensing terminals configured to sense a voltage when the electrical current passes through the magnetic free layer and the spin Hall layer, where each of the push and sensing terminals is electrically isolated from the other terminals.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: July 21, 2020
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Quang Le, David John Seagle, Xiaoyong Liu, Daniele Mauri, Yongchul Ahn, Hongquan Jiang, Guangli Liu, David Patrick Druist, Jui-Lung Li
  • Patent number: 10643642
    Abstract: An apparatus comprises a main pole, a trailing shield, a write-field-enhancing structure, a write coil, a write current control circuit configured to supply a write current to the write coil to record a bit to a magnetic medium, and a driving current control circuit configured to supply a driving current to the write-field-enhancing structure, wherein the driving current comprises a driving pulse, and wherein the driving current comprises an AC component with a duty cycle selected based at least in part on a power constraint. A method of writing to a magnetic medium comprises supplying a write current to a write coil of a magnetic write head, and supplying a driving current to a free layer disposed in a write gap between a main pole and a trailing shield, wherein the driving current comprises an AC component with a duty cycle based at least in part on a power constraint.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: May 5, 2020
    Assignee: Western Digital Technologies, Inc.
    Inventors: Gonçalo Marcos Baião De Albuquerque, Yunfei Ding, Alexander Goncharov, Kuok San Ho, Daniele Mauri, Goran Mihajlovic, Suping Song, Petrus Antonius Van Der Heijden
  • Publication number: 20190325902
    Abstract: An apparatus comprises a main pole, a trailing shield, a write-field-enhancing structure, a write coil, a write current control circuit configured to supply a write current to the write coil to record a bit to a magnetic medium, and a driving current control circuit configured to supply a driving current to the write-field-enhancing structure, wherein the driving current comprises a driving pulse, and wherein the driving current comprises an AC component with a duty cycle selected based at least in part on a power constraint. A method of writing to a magnetic medium comprises supplying a write current to a write coil of a magnetic write head, and supplying a driving current to a free layer disposed in a write gap between a main pole and a trailing shield, wherein the driving current comprises an AC component with a duty cycle based at least in part on a power constraint.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Applicant: Western Digital Technologies, Inc.
    Inventors: Gonçalo Marcos Baião DE ALBUQUERQUE, Yunfei DING, Alexander GONCHAROV, Kuok San HO, Daniele MAURI, Goran MIHAJLOVIC, Suping SONG, Petrus Antonius VAN DER HEIJDEN
  • Patent number: 10388305
    Abstract: Disclosed herein are apparatuses and methods for writing to a magnetic medium, and data storage devices comprising such apparatuses and methods. An apparatus comprises a main pole, a trailing shield, a write-field-enhancing structure, a write coil, a write current control circuit configured to supply a write current to the write coil to record a bit to a magnetic medium, and a driving current control circuit configured to supply a driving current to the write-field-enhancing structure, wherein the driving current comprises a driving pulse. A method of writing to a magnetic medium comprises supplying a write current to a write coil of a magnetic write head, and supplying a driving current to a free layer disposed in a write gap between a main pole and a trailing shield of the magnetic write head, wherein the driving current comprises an AC component.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 20, 2019
    Assignee: Western Digital Technologies, Inc.
    Inventors: Gonçalo Marcos Baião De Albuquerque, Yunfei Ding, Alexander Goncharov, Kuok San Ho, Daniele Mauri, Goran Mihajlovic, Suping Song, Petrus Antonius Van Der Heijden
  • Patent number: 10354681
    Abstract: A tunnel magnetoresistance (TMR) read head includes a first magnetic shield, a read sensor stripe located over the first magnetic shield, a second magnetic shield located over the sensor layer stack, an electrical isolation dielectric layer located on sidewalls of the read sensor stripe, and a pair of side shields located on the electrical isolation dielectric layer between the first magnetic shield and the second magnetic shield. The read sensor stripe includes a sensor layer stack containing a pinned layer stack, a non-magnetic electrically insulating barrier layer, and a ferromagnetic free layer. The side shields include nanocrystalline ferromagnetic particles, such as Fe, Co or CoFe, embedded in a non-magnetic dielectric material matrix, such as hafnium oxide.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: July 16, 2019
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Chen-Jung Chien, Daniele Mauri, Gonçalo Baião De Albuquerque, Ming Mao