Patents by Inventor Daniele Vimercati

Daniele Vimercati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200058342
    Abstract: Methods, systems, and devices for section-based data protection in a memory device are described. In one example, a memory device may include a set memory sections each having memory cells configured to be selectively coupled with access lines of the respective memory section. A method of operating the memory device may include selecting at least one of the sections for a voltage adjustment operation based on a determined value of a timer, and performing the voltage adjustment operation on the selected section by activating each of a plurality of word lines of the selected section. The voltage adjustment operation may include applying an equal voltage to opposite terminals of the memory cells, which may allow built-up charge, such as leakage charge accumulating from access operations of the selected memory section, to dissipate from the memory cells of the selected section.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 20, 2020
    Inventors: Richard E. Fackenthal, Daniele Vimercati, Jahanshir Javanifard
  • Publication number: 20200035285
    Abstract: Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. Offsets in the threshold voltage of switching components (e.g., transistors) connected to digit lines may be compensated by using various operating techniques or additional circuit components, or both. For example, a switching component connected to a digit line may also be connected to an offset capacitor selected to compensate for a threshold voltage offset. The offset capacitor may be discharged in conjunction with a read operation, resulting in a threshold voltage applied to the switching component. This may enable all or substantially all of the stored charge of the ferroelectric memory cell to be extracted and transferred to a sense capacitor through the transistor. A sense amplifier may compare the voltage of the sense capacitor to a reference voltage in order to determine the stored logic state of the memory cell.
    Type: Application
    Filed: August 8, 2019
    Publication date: January 30, 2020
    Inventor: Daniele Vimercati
  • Publication number: 20200035292
    Abstract: Methods and apparatus for sensing a memory cell using lower offset, higher speed sense amplifiers are described. A sense amplifier may include an amplifier component that is configurable to operate in an amplifier mode or a latch mode. In some examples, the amplifier component may be configured to operate in the amplifier or latch mode by activating or deactivating switching components inside the amplifier component. When configured to operate in the amplifier mode, the amplifier component may be used, during a read operation of a memory cell, to pre-charge a digit line and/or amplify a signal received from the memory cell. When configured to operate in the latch mode, the amplifier component may be used to latch a state of the memory cell. In some cases, the amplifier component may use some of the same internal circuitry for pre-charging the digit line, amplifying the signal, and/or latching the state.
    Type: Application
    Filed: August 8, 2019
    Publication date: January 30, 2020
    Inventors: Xinwei Guo, Daniele Vimercati
  • Patent number: 10546629
    Abstract: Methods, systems, and devices for operating a memory device are described. A sense amplifier may be used to precharge an access line to increase the reliability of the sensing operation. The access line may then charge share with the memory cell and a capacitor, which may be a reference capacitor, which may result in high-level states and low-level states on the access line. By precharging the access line with the sense amplifier and implementing charge sharing between the access line and a capacitor, the resulting high-level state and the low-level states on the access line may account for any offset voltage associated with the sense amplifier.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: January 28, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Publication number: 20200013437
    Abstract: Methods, systems, and devices for self-referencing sensing schemes with coupling capacitance are described. A sense component of a memory device may include a capacitive coupling between two nodes of the sense component. The capacitive coupling may, in some examples, be provided by a capacitive element of the sense component or an intrinsic capacitance between features of the sense component. An example of a method employing such a sense component for detecting a logic state stored by a memory cell may include generating a first sense signal at one of the nodes while the node is coupled with the memory cell, and generating a second sense signal at the other of the nodes while the other node is coupled with the memory cell. The sense signals may be based at least in part on the capacitive coupling between the two nodes.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 9, 2020
    Inventors: Mahdi Jamali, William A. Melton, Daniele Vimercati, Xinwei Guo, Yasuko Hattori
  • Patent number: 10529401
    Abstract: Methods, systems, and devices for access line management for an array of memory cells are described. Some memory devices may include a plate that is coupled with memory cells associated with a plurality of digit lines and/or a plurality of word lines. Because the plate is coupled with a plurality of digit lines and/or word lines, unintended cross-coupling between various components of the memory device may be significant. To mitigate the impact of unintended cross-coupling between various components, the memory device may float unselected word lines during one or more portions of an access operation. Accordingly, a voltage of each unselected word line may relate to the voltage of the plate as changes in plate voltage may occur.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 7, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Publication number: 20200005851
    Abstract: Methods, systems, and devices for a sensing scheme that extracts the full or nearly full remnant polarization charge difference between two logic states of a ferroelectric memory cell or cells is described. The scheme employs a charge mirror to extract the full charge difference between the two states of a selected memory cell. The charge mirror may transfer the memory cell polarization charge to an amplification capacitor. The signal on the amplification capacitor may then be compared with a reference voltage to detect the logic state of the memory cell.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 2, 2020
    Inventors: Xinwei Guo, Daniele Vimercati
  • Publication number: 20190392882
    Abstract: Methods, systems, and devices related to wear leveling for random access and ferroelectric memory are described. Non-volatile memory devices, e.g., ferroelectric random access memory (FeRAM) may utilize wear leveling to extend life time of the memory devices by avoiding reliability issues due to a limited cycling capability. A wear-leveling pool, or number of cells used for a wear-leveling application, may be expanded by softening or avoiding restrictions on a source page and a destination page within a same section of memory array. In addition, error correction code may be applied when moving data from the source page to the destination page to avoid duplicating errors present in the source page.
    Type: Application
    Filed: July 8, 2019
    Publication date: December 26, 2019
    Inventors: Richard E. Fackenthal, Daniele Vimercati, Duane R. Mills
  • Publication number: 20190393167
    Abstract: Apparatuses and methods for memory that includes a first memory cell including a storage component having a first end coupled to a plate line and a second end coupled to a digit line, and a second memory cell including a storage component having a first end coupled to a digit line and a second end coupled to a plate line, wherein the digit line of the second memory cell is adjacent to the plate line of the first memory cell.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ferdinando Bedeschi, Umberto Di Vincenzo, Daniele Vimercati
  • Publication number: 20190385663
    Abstract: Methods, systems, and devices for differential amplifier schemes for sensing memory cells are described. In one example, a memory apparatus may include a differential amplifier having a first input node configured to be coupled with a memory cell and having an output node configured to be coupled with a sense component. In some examples, the memory apparatus may also include a capacitor having a first node coupled with the first input node, and a first switching component configured to selectively couple a second node of the capacitor with the output node. The differential amplifier may configured such that a current at the output node is proportional to a difference between a voltage at the first input node of the differential amplifier and a voltage at the second input node of the differential amplifier.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 19, 2019
    Inventors: Daniele Vimercati, Stefan Frederik Schippers, Xinwei Guo
  • Patent number: 10510423
    Abstract: Methods, systems, and devices for techniques to mitigate disturbances of unselected memory cells in a memory array during an access operation are described. A shunt line may be formed between a plate of a selected memory cell and a digit line of the selected memory cell to couple the plate to the digit line during the access operation. A switching component may be positioned on the shunt line. The switching component may selectively couple the plate to the digit line based on instructions received from a memory controller. By coupling the plate to the digit line during the access operation, voltages resulting on the plate by changes in the voltage level of the digit line may be reduced in magnitude or may be altered in type.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: December 17, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Daniele Vimercati, Mark Fischer, Adam D. Johnson
  • Patent number: 10504909
    Abstract: Methods, systems, and devices for plate node configurations and operations for a memory array are described. A single plate node of a memory array may be coupled to multiple rows or columns of memory cells (e.g., ferroelectric memory cells) in a deck of memory cells. The single plate node may perform the functions of multiple plate nodes. The number of contacts to couple the single plate node to the substrate may be less than the number of contacts to couple multiple plate nodes to the substrate. Connectors or sockets in a memory array with a single plate node may define a size that is less than a size of the connectors or sockets with multiple plate nodes. In some examples, a single plate node of the memory array may be coupled to multiple lines of a memory cells in multiple decks of memory cells.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: December 10, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Patent number: 10504590
    Abstract: In one embodiment, an apparatus, such as a memory device, is disclosed. The apparatus includes a memory cell, digit line driver, access line driver, clamping element, and control circuit. The memory cell and clamping element can be both coupled to a digit line. The control circuit can be configured to cause the clamping element to clamp the voltage of the digit line for a period of time while the digit line driver is caused to bias the digit line at a voltage level sufficient to enable selection of the memory cell. In addition, the control circuit can be configured to cause the access line driver to bias an access line coupled to memory cell when the voltage of the digit line is at the voltage level sufficient to enable selection of the memory cell.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 10, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Efrem Bolandrina, Daniele Vimercati
  • Patent number: 10504576
    Abstract: The present disclosure includes apparatuses, methods, and systems for current separation for memory sensing. An embodiment includes applying a sensing voltage to a memory cell having a ferroelectric material, and determining a data state of the memory cell by separating a first current output by the memory cell while the sensing voltage is being applied to the memory cell and a second current output by the memory cell while the sensing voltage is being applied to the memory cell, wherein the first current output by the memory cell corresponds to a first polarization state of the ferroelectric material of the memory cell and the second current output by the memory cell corresponds a second polarization state of the ferroelectric material of the memory cell.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: December 10, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati
  • Publication number: 20190341092
    Abstract: Methods, systems, and devices for access line management for an array of memory cells are described. Some memory devices may include a plate that is coupled with memory cells associated with a plurality of digit lines and/or a plurality of word lines. Because the plate is coupled with a plurality of digit lines and/or word lines, unintended cross-coupling between various components of the memory device may be significant. To mitigate the impact of unintended cross-coupling between various components, the memory device may float unselected word lines during one or more portions of an access operation. Accordingly, a voltage of each unselected word line may relate to the voltage of the plate as changes in plate voltage may occur.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 7, 2019
    Inventor: Daniele Vimercati
  • Patent number: 10468085
    Abstract: Methods, systems, and apparatuses for redundancy in a memory array are described. A memory array may include some memory cells that are redundant to other memory cells of the array. Such redundant memory cells may be used if a another memory cell is discovered to be defective in some way; for example, after the array is fabricated and before deployment, defects in portions of the array that affect certain memory cells may be identified. Memory cells may be designated as redundant cells for numerous other memory cells of the array so that a total number of redundant cells in the array is relatively small fraction of the total number of cells of the array. A configuration of switching components may allow redundant cells to be operated in a manner that supports redundancy for numerous other cells and may limit or disturbances to neighboring cells when accessing redundancy cells.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: November 5, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Daniele Vimercati, Xinwei Guo
  • Publication number: 20190325941
    Abstract: Methods and apparatus for sensing a memory cell using lower offset, higher speed sense amplifiers are described. A sense amplifier may include an amplifier component that is configurable to operate in an amplifier mode or a latch mode. In some examples, the amplifier component may be configured to operate in the amplifier or latch mode by activating or deactivating switching components inside the amplifier component. When configured to operate in the amplifier mode, the amplifier component may be used, during a read operation of a memory cell, to pre-charge a digit line and/or amplify a signal received from the memory cell. When configured to operate in the latch mode, the amplifier component may be used to latch a state of the memory cell. In some cases, the amplifier component may use some of the same internal circuitry for pre-charging the digit line, amplifying the signal, and/or latching the state.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Inventors: Xinwei Guo, Daniele Vimercati
  • Patent number: 10446502
    Abstract: Apparatuses and methods for memory that includes a first memory cell including a storage component having a first end coupled to a plate line and a second end coupled to a digit line, and a second memory cell including a storage component having a first end coupled to a digit line and a second end coupled to a plate line, wherein the digit line of the second memory cell is adjacent to the plate line of the first memory cell.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Micron, Technology, Inc.
    Inventors: Ferdinando Bedeschi, Umberto Di Vincenzo, Daniele Vimercati
  • Patent number: 10446220
    Abstract: Methods and apparatus for sensing a memory cell using lower offset, higher speed sense amplifiers are described. A sense amplifier may include an amplifier component that is configurable to operate in an amplifier mode or a latch mode. In some examples, the amplifier component may be configured to operate in the amplifier or latch mode by activating or deactivating switching components inside the amplifier component. When configured to operate in the amplifier mode, the amplifier component may be used, during a read operation of a memory cell, to pre-charge a digit line and/or amplify a signal received from the memory cell. When configured to operate in the latch mode, the amplifier component may be used to latch a state of the memory cell. In some cases, the amplifier component may use some of the same internal circuitry for pre-charging the digit line, amplifying the signal, and/or latching the state.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Xinwei Guo, Daniele Vimercati
  • Patent number: 10438642
    Abstract: Methods, systems, and devices for operating a ferroelectric memory cell or cells are described. Offsets in the threshold voltage of switching components (e.g., transistors) connected to digit lines may be compensated by using various operating techniques or additional circuit components, or both. For example, a switching component connected to a digit line may also be connected to an offset capacitor selected to compensate for a threshold voltage offset. The offset capacitor may be discharged in conjunction with a read operation, resulting in a threshold voltage applied to the switching component. This may enable all or substantially all of the stored charge of the ferroelectric memory cell to be extracted and transferred to a sense capacitor through the transistor. A sense amplifier may compare the voltage of the sense capacitor to a reference voltage in order to determine the stored logic state of the memory cell.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 8, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Daniele Vimercati