Patents by Inventor Darren Molloy

Darren Molloy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9475086
    Abstract: A conductive coupling frame (CF) having two ends, forming an open loop, disposed surrounding and closely adjacent a transponder chip module (TCM), and substantially coplanar with an antenna structure (AS, LES) in the transponder chip module (TCM). A metal card body (MCB) having a slit (S) extending from a module opening (MO) to a periphery of the card body to function as a coupling frame (CF). The coupling frame (CF) may be thick enough to be non-transparent to RF at frequencies of interest. A switch may be provided to connect ends of the coupling frame (CF) across the slit (S). The transponder chip module (TCM) may comprise a laser-etched antenna structure (LES) and a non-perforated contact pad (CP) arrangement.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: October 25, 2016
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Patent number: 9390364
    Abstract: A capacitive coupling enhanced (CCE) transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF, 320A) may be in the form of a ring, having an inner edge (IE), an outer edge IE, 324) and a central opening (OP), disposed closely adjacent to and surrounding the module antenna (MA). A slit (S) may extend from the inner edge (IE) to the outer edge (OE) of the coupling frame (CF) so that the coupling frame (CF) is “open loop”. An RFID device may comprise a transponder chip module (TCM) having a module antenna (MA), a device substrate (DS), and an antenna structure (AS) disposed on the device substrate (DS) and connected with the module antenna (MA). A portion of a conductive layer (CL, 904) remaining after etching a module antenna (MA) may be segmented to have several smaller isolated conductive structures.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: July 12, 2016
    Assignee: Féinics AmaTech Teoranta
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20160110639
    Abstract: RFID devices comprising (i) a transponder chip module (TCM, 1410) having an RFIC chip (IC) and a module antenna (MA), and (ii) a coupling frame (CF) having an electrical discontinuity comprising a slit (S) or non-conductive stripe (NCS). The coupling frame may be disposed closely adjacent the transponder chip module so that the slit overlaps the module antenna. The RFID device may be a payment object such as a jewelry item having a metal component modified with a slit (S) to function as a coupling frame. The coupling frame may be moved (such as rotated) to position the slit to selectively overlap the module antennas (MA) of one or more transponder chip modules (TCM-1, TCM-2) disposed in the payment object, thereby selectively enhancing (including enabling) contactless communication between a given transponder chip module in the payment object and another RFID device such as an external contactless reader. The coupling frame may be tubular. A card body construction for a metal smart card is disclosed.
    Type: Application
    Filed: September 22, 2015
    Publication date: April 21, 2016
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150278675
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: October 1, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269472
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269477
    Abstract: A dual-interface metal hybrid smartcard comprising a plastic card body (CB); a metal slug (MS) disposed in the card body; and a booster antenna (BA) disposed in the card body. The metal slug may have a surface area which is at least 50% of a surface area of the card body, and may comprise titanium or alloys thereof. A antenna chip module (AM) having an antenna (MA) and contact pads (CP) may be disposed in an opening of the card body. The metal slug may comprise two or more separate metal slug components (MS-1, MS-2), which may overlap one another or which may be disposed at different locations in the card body (CB), without overlapping one another. The first metal slug component (MS-1) may be disposed around a peripheral portion of the card body (CB) as an “open loop” discontinuous metal frame around (external to) the booster antenna (BA). The second metal slug component (MS-2) may be disposed internal to the card antenna (CA) component of the booster antenna (BA).
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy, Klaus Ummenhofer
  • Publication number: 20150269471
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150269474
    Abstract: The planar antenna (PA) of a transponder chip module (TCM) may have a U-shaped portion so that an outer end (OE) of the antenna may be positioned close to an RFID chip (IC) disposed at a central area of a module tape (MT) for the transponder chip module. A module tape (MT2) may have contact pads (CP) on one side thereof and a connection bridge (CBR) on another side thereof, and may be joined with a module tape (MT1) having a planar antenna (PA). Metal of a conductive layer (CL) within a conductive element such as a coupling frame (CF) or a planar antenna (PA) may be scribed to have many small segments. A metal sheet may be stamped to have contact side metallization, and joined with a module tape (MT) having a planar antenna (PA).
    Type: Application
    Filed: February 11, 2015
    Publication date: September 24, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150136858
    Abstract: A capacitive coupling enhanced (CCE) transponder chip module (TCM) comprises an RFID chip (CM, IC), optionally contact pads (CP), a module antenna (MA), and a coupling frame (CF), all on a common substrate or module tape (MT). The coupling frame (CF, 320A) may be in the form of a ring, having an inner edge (IE), an outer edge IE, 324) and a central opening (OP), disposed closely adjacent to and surrounding the module antenna (MA). A slit (S) may extend from the inner edge (IE) to the outer edge (OE) of the coupling frame (CF) so that the coupling frame (CF) is “open loop”. An RFID device may comprise a transponder chip module (TCM) having a module antenna (MA), a device substrate (DS), and an antenna structure (AS) disposed on the device substrate (DS) and connected with the module antenna (MA). A portion of a conductive layer (CL, 904) remaining after etching a module antenna (MA) may be segmented to have several smaller isolated conductive structures.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 21, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20150021403
    Abstract: A conductive coupling frame (CF) having two ends, forming an open loop having two ends or a discontinuous metal layer disposed surrounding and closely adjacent a transponder chip module (TCM, 610), and substantially coplanar with an antenna structure (AS, CES, LES) in the transponder chip module (TCM). A metal card body (MCB, CB) or a transaction card with a discontinuous metal layer having a slit (S) or a non-conductive strip (NCS, 1034) extending from a module opening (MO) to a periphery of the card body to function as a coupling frame (CF). The coupling frame (CF) may be thick enough to be non-transparent to RF at frequencies of interest. A switch (SW) may be provided to connect ends of the coupling frame (CF) across the slit (S, 630). A reinforcing structure (RS) may be provided to stabilize the coupling frame (CF) and card body (CB).
    Type: Application
    Filed: September 22, 2014
    Publication date: January 22, 2015
    Inventors: David Finn, Mustafa Lotya, Darren Molloy
  • Publication number: 20140361086
    Abstract: A conductive coupling frame (CF) having two ends, forming an open loop, disposed surrounding and closely adjacent a transponder chip module (TCM), and substantially coplanar with an antenna structure (AS, LES) in the transponder chip module (TCM). A metal card body (MCB) having a slit (S) extending from a module opening (MO) to a periphery of the card body to function as a coupling frame (CF). The coupling frame (CF) may be thick enough to be non-transparent to RF at frequencies of interest. A switch may be provided to connect ends of the coupling frame (CF) across the slit (S). The transponder chip module (TCM) may comprise a laser-etched antenna structure (LES) and a non-perforated contact pad (CP) arrangement.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: David Finn, Mustafa Lotya, Darren Molloy