Patents by Inventor Darsen D. Lu

Darsen D. Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564439
    Abstract: A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9553173
    Abstract: A field effect transistor device comprises a semiconductor substrate, a doped source layer arranged on the semiconductor substrate, an insulator layer arranged on the doped source layer, a fin arranged on the insulator layer, a source region extension portion extending from the doped source layer and through the fin, a gate stack arranged over a channel region of the fin and adjacent to the source region extension portion, a drain region arranged on the fin adjacent to the gate stack; the drain region having a graduated doping concentration.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chung H. Lam, Chung-hsun Lin, Darsen D. Lu, Philip J. Oldiges
  • Patent number: 9548386
    Abstract: A method of forming a semiconductor structure that includes a tensily strained silicon fin extending upwards from a first portion of a substrate and in an nFET device region, and a SiGe fin structure extending upwards from a second portion of the substrate and in a pFET device region. In accordance with the present application, the SiGe fin structure comprises, from bottom to top, a lower SiGe fin that is relaxed and an upper SiGe fin, wherein the upper SiGe fin is compressively strained and has a germanium content that is greater than a germanium content of the lower SiGe fin.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9548213
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Patent number: 9543323
    Abstract: A method for fabricating a semiconductor device, includes providing a strained silicon on insulator (SSOI) structure, the SSOI structure comprises, a dielectric layer disposed on a substrate, a silicon germanium layer disposed on the dielectric layer, and a strained semiconductor material layer disposed directly on the silicon germanium layer, forming a plurality of fins on the SSOI structure, forming a gate structure over a portion of at least one fin in a nFET region, forming a gate structure over a portion of at least one fin in a pFET region, removing the gate structure over the portion of the at least one fin in the pFET region, removing the silicon germanium layer exposed by the removing, and forming a new gate structure over the portion of the at least one fin in the pFET region, such that the new gate structure surrounds the portion on all four sides.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: January 10, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20170005088
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Application
    Filed: August 12, 2016
    Publication date: January 5, 2017
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Publication number: 20170005087
    Abstract: The electrical device includes a plurality of fin structures, the plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. Each of the plurality of fin structures having substantially a same geometry. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures, wherein the decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Application
    Filed: August 12, 2016
    Publication date: January 5, 2017
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Patent number: 9525027
    Abstract: A lateral bipolar junction transistor is fabricated using a semiconductor-on-insulator substrate. The transistor includes a germanium gradient within a doped silicon base region, there being an increasing germanium content in the direction of the collector region of the transistor. The use of a substrate including parallel silicon fins to fabricate lateral bipolar junction transistors facilitates the inclusion of both CMOS FinFET devices and lateral bipolar junction transistors having graded silicon germanium base regions on the same chip.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: December 20, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Pouya Hashemi, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Dominic J. Schepis
  • Publication number: 20160359003
    Abstract: A method for fabricating a semiconductor device, includes providing a strained silicon on insulator (SSOI) structure, the SSOI structure comprises, a dielectric layer disposed on a substrate, a silicon germanium layer disposed on the dielectric layer, and a strained semiconductor material layer disposed directly on the silicon germanium layer, forming a plurality of fins on the SSOI structure, forming a gate structure over a portion of at least one fin in a nFET region, forming a gate structure over a portion of at least one fin in a pFET region, removing the gate structure over the portion of the at least one fin in the pFET region, removing the silicon germanium layer exposed by the removing, and forming a new gate structure over the portion of the at least one fin in the pFET region, such that the new gate structure surrounds the portion on all four sides.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 8, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9515171
    Abstract: Techniques for producing radiation tolerant device structures are provided. In one aspect, a method for forming a radiation-hardened device includes the steps of: forming fin masks on a SOI layer of an SOI wafer, wherein the SOI wafer includes the SOI layer separated from a substrate by a buried insulator; patterning fins in the SOI layer using the fin masks; and implanting at least one dopant into exposed portions of the buried insulator between the fins to increase a radiation hardness of the device structure by providing a path in the buried insulator for charge to dissipate, wherein the fin masks are left in place during the implanting step to prevent damage to the fins. Implementations with a bulk substrate, as well as the resulting devices, are also provided.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Philip J. Oldiges
  • Patent number: 9455250
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Publication number: 20160233315
    Abstract: A method of forming a fin structure that includes forming a plurality of fin structures from a bulk semiconductor substrate and forming a dielectric spacer on a sidewall of each fin structure in the plurality of fin structure. A semiconductor spacer is formed on a sidewall of the dielectric spacer. A dielectric fill is formed in the space between the adjacent fin structures. The semiconductor spacer and a portion of the fin structures that is present below a lower surface of the dielectric spacer are oxidized. Oxidizing a base portion of the fin structures produces a first strain and oxidizing the semiconductor spacer produces a second strain that is opposite the first strain.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 11, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Darsen D. Lu, Ali Khakifirooz, Kern Rim
  • Publication number: 20160204131
    Abstract: A method for fabricating a semiconductor device, includes providing a strained silicon on insulator (SSOI) structure, the SSOI structure comprises, a dielectric layer disposed on a substrate, a silicon germanium layer disposed on the dielectric layer, and a strained semiconductor material layer disposed directly on the silicon germanium layer, forming a plurality of fins on the SSOI structure, forming a gate structure over a portion of at least one fin in a nFET region, forming a gate structure over a portion of at least one fin in a pFET region, removing the gate structure over the portion of the at least one fin in the pFET region, removing the silicon germanium layer exposed by the removing, and forming a new gate structure over the portion of the at least one fin in the pFET region, such that the new gate structure surrounds the portion on all four sides.
    Type: Application
    Filed: January 13, 2015
    Publication date: July 14, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20160197077
    Abstract: A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20160197078
    Abstract: A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9362400
    Abstract: A finFET semiconductor device includes a semiconductor-on-insulator (SOI) substrate including a buried insulator layer, a plurality of semiconductor fins on the buried insulator layer, and a gate structure covering the semiconductor fins, at least one buried stressor element embedded in the buried insulator layer, and a source/drain element on an upper surface of the at least one buried stressor element and integrally formed with at least one semiconductor fin among the plurality of semiconductor fins, the at least one buried stressor element applying a stress upon the source/drain element from therebeneath.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: June 7, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20160133697
    Abstract: A method of forming a semiconductor device that includes forming a gate structure on a fin structure and etching the source and drain region portions of the fin structure to provide a recessed surface. A first semiconductor layer is formed on the recessed surface of the fin structure that is doped to a first conductivity type. A leakage barrier layer is formed on the first semiconductor layer. A second semiconductor layer is formed on the leakage barrier layer. The second semiconductor layer is doped to a second conductivity type.
    Type: Application
    Filed: December 28, 2015
    Publication date: May 12, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Patent number: 9299618
    Abstract: A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: March 29, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20160086858
    Abstract: A non-planar semiconductor structure containing semiconductor fins that are isolated from an underlying bulk silicon substrate by an epitaxial semiconductor stack is provided. The epitaxial semiconductor material stack that provides the isolation includes, from bottom to top, a semiconductor punch through stop containing at least one dopant of a conductivity type which differs from the conductivity type of the particular device region that the semiconductor fin is formed in, and a semiconductor diffusion barrier layer containing no n- or p-type dopant.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek, Kern Rim
  • Publication number: 20160064210
    Abstract: A method of forming a semiconductor structure includes etching a semiconductor region of a substrate to form a thinned semiconductor region, and forming a silicon-germanium layer on the thinned semiconductor region, the silicon-germanium layer having a graded concentration profile of germanium atoms.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Alexander Reznicek