Patents by Inventor David A. BRITZ

David A. BRITZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190189399
    Abstract: Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 20, 2019
    Inventors: SATORU KOBAYASHI, LANCE SCUDDER, DAVID BRITZ, SOONAM PARK, DMITRY LUBOMIRSKY, HIDEO SUGAI
  • Patent number: 9338788
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: May 10, 2016
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert Raymond Miller, II
  • Publication number: 20150351112
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: August 10, 2015
    Publication date: December 3, 2015
    Inventors: David Britz, Robert Raymond Miller, II
  • Patent number: 9106344
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: August 11, 2015
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert Raymond Miller, II
  • Patent number: 8742648
    Abstract: An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 3, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: David Britz
  • Publication number: 20130336648
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: DAVID BRITZ, Robert Raymond Miller, II
  • Patent number: 8515294
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 20, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Publication number: 20130134718
    Abstract: An energy collecting device is disclosed. For example, the energy collecting device comprises a plate layer having a plurality of perforations for receiving a plurality of molecules, a molecular energy collecting layer, coupled to the plate layer, having an impacting structure for receiving the plurality of molecules, and a substrate layer, coupled to the molecular energy collecting layer, having a conductor wire coil for collecting electrons that are generated when the plurality of molecules impacts the impacting structure.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventor: DAVID BRITZ
  • Patent number: 8417121
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a liquid lens are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where a liquid lens is deployed with each of the one or more detectors. The method determines, for each of the detected signals, if the detected signal is out of focus, and applies a corrective voltage to each liquid lens that corresponds to a detected terahertz signal that is out of focus, wherein the corrective voltage adjusts a focus of the detected signal. The method measures a signal-to-noise ratio of the detected signals, and establishing a terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 9, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Patent number: 8369584
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 5, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Publication number: 20120294494
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Application
    Filed: July 30, 2012
    Publication date: November 22, 2012
    Applicant: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Patent number: 8233673
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 31, 2012
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: David Britz, Robert R. Miller
  • Publication number: 20120099856
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a plurality of active beam steering device are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where an active beam steering device is deployed with each of the one or more detectors, and determines, for each of the detected signals, if the detected signal is out of focus from a focus point. The method applies a corrective signal to each active beam steering device that corresponds to a detected terahertz signal that is out of focus from the focus point, wherein the corrective signal causes the detected signal to be redirected, and measures a signal-to-noise ratio of the detected signals. The method then establishes the terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Inventors: DAVID BRITZ, Robert R. Miller
  • Publication number: 20110293268
    Abstract: A method and apparatus for establishing a terahertz link using a multi-element lens array that comprises a liquid lens are disclosed. For example, the method receives detected terahertz signals from one or more detectors, where a liquid lens is deployed with each of the one or more detectors. The method determines, for each of the detected signals, if the detected signal is out of focus, and applies a corrective voltage to each liquid lens that corresponds to a detected terahertz signal that is out of focus, wherein the corrective voltage adjusts a focus of the detected signal. The method measures a signal-to-noise ratio of the detected signals, and establishing a terahertz link via at least one of the detected terahertz signals with a highest signal-to-noise ratio.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Inventors: DAVID BRITZ, Robert R. Miller
  • Publication number: 20110096960
    Abstract: A method and apparatus for providing eye-scan authentication using an adaptive liquid lens are disclosed. For example, in one embodiment, the method receives a request for eye-scan authentication from a mobile endpoint device of a user, wherein the request comprises a first retinal image of the user captured using an adaptive liquid lens of the mobile endpoint device. The method obtains a second retinal image of the user, wherein the second retinal image is a stored retinal image of the user. The method authenticates the first retinal image against the second retinal image. In another embodiment, the method captures a first retinal image of a user via a mobile endpoint device of the user, wherein the mobile endpoint device comprises an adaptive liquid lens. The method then sends a request for eye-scan authentication from the mobile endpoint device over a network, wherein the request comprises the first retinal image.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 28, 2011
    Inventors: DAVID BRITZ, Robert R. Miller
  • Publication number: 20110098033
    Abstract: A method and apparatus for processing a terahertz frequency electromagnetic beam are disclosed. For example, the method receives the terahertz frequency electromagnetic beam via a metamaterial having a plurality of addressable magnetic elements, where a resonant frequency of each of the plurality of addressable magnetic elements is capable of being programmably changed via an adjustment, and activates selectively a subset of the plurality of addressable magnetic elements to manipulate the terahertz frequency electromagnetic beam.
    Type: Application
    Filed: August 18, 2010
    Publication date: April 28, 2011
    Inventors: DAVID BRITZ, Robert R. Miller
  • Publication number: 20080244665
    Abstract: A method of providing video content is disclosed that includes identifying a current user of a set-top box device, where a plurality of users that includes the current user is associated with the set-top box device. The method also includes identifying a first channel associated with the set-top box device, where the set-top box device is tuned to the first channel. Further, the method includes predicting that the current user will select at least one next channel based on historical data associated with the current user. The method also includes streaming video content of the at least one next channel to the set-top box device via a video distribution network while the set-top box device is tuned to the first channel.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Applicant: AT&T Knowledge Ventures, LP
    Inventors: Donald Bowen, Lusheng Ji, David Britz, Constance Coty
  • Publication number: 20060209766
    Abstract: A secure, open-air communication system utilizes a plurality of “decoy” data signals to hide one or more true data signals. The true data signal(s) are channel hopped with the plurality of decoy data signals to form a multi-channel “scrambled” output signal that is thereafter transmitted in an open-air communication system. The greater the number of decoy signals, the greater the security provided to the open-air system. Further security may be provided by encrypting both the true and decoy signals prior to scrambling and/or by utilizing a spatially diverse set of transmitters and receivers. Without the knowledge of the channel assignment(s) for the true signal(s), an eavesdropper may be able to intercept (and, with time, perhaps descramble) the open-air transmitted signals, will not be able to distinguish the true data from the decoys without also knowing the channel assignment(s).
    Type: Application
    Filed: March 16, 2005
    Publication date: September 21, 2006
    Inventors: David Britz, Robert Miller, Nemmara Shankaranarayanan