Patents by Inventor David A. Bryce

David A. Bryce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190059386
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: August 31, 2018
    Publication date: February 28, 2019
    Applicant: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 10092007
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 9, 2018
    Assignee: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20170367345
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: August 11, 2017
    Publication date: December 28, 2017
    Applicant: Clene Nanomedicine, Inc.
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20170348350
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals. The invention further includes pharmaceutical compositions thereof and the use of the gold nanocrystals or suspensions or colloids thereof for the treatment or prevention of diseases or conditions for which gold therapy is already known and more generally for conditions resulting from pathological cellular activation, such as inflammatory (including chronic inflammatory) conditions, autoimmune conditions, hypersensitivity reactions and/or cancerous diseases or conditions.
    Type: Application
    Filed: March 21, 2017
    Publication date: December 7, 2017
    Applicant: Clene Nanomedicine, Inc.
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20170307495
    Abstract: A particle characterization apparatus comprising: a light source for illuminating a sample with a light beam; a detector arranged to detect scattered light from the interaction of the light beam with the sample; and a focus tuneable lens arranged to collect the scattered light for the detector from a scattering volume and/or to direct the light beam into the sample.
    Type: Application
    Filed: March 9, 2017
    Publication date: October 26, 2017
    Applicant: Malvern Instruments Ltd.
    Inventors: Jason Cecil William CORBETT, David BRYCE
  • Patent number: 9743672
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: August 29, 2017
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Patent number: 9603870
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 28, 2017
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Adam R. Dorfman, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Publication number: 20160375058
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred.
    Type: Application
    Filed: June 30, 2016
    Publication date: December 29, 2016
    Applicant: GR Intellectual Reserve, LLC
    Inventors: David Kyle Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20160317578
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Application
    Filed: July 7, 2016
    Publication date: November 3, 2016
    Applicant: GR Intellectual Reserve, LLC
    Inventors: Adam R. Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliakov, Mark G. Mortenson
  • Patent number: 9387225
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 12, 2016
    Inventors: Adam R. Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliakov, Mark G. Mortenson
  • Patent number: 9387452
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 12, 2016
    Assignee: GR Intellectual Reserve, LLC.
    Inventors: David Kyle Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20150093453
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: November 15, 2013
    Publication date: April 2, 2015
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20150064278
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: David Kyle Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20140294963
    Abstract: The present invention relates to novel gold-platinum based bi-metallic nanocrystal suspensions that have nanocrystal surfaces that are substantially free from organic or other impurities or films associated with typical chemical reductants/stabilizers and/or raw materials used in nanoparticle formation processes. Specifically, the surfaces are “clean” relative to the surfaces of metal-based nanoparticles made using chemical reduction (and other) processes that require organic (or other) reductants and/or surfactants to grow (and/or suspend) metal nanoparticles from metal ions in a solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the bi-metallic nanocrystal suspensions. The techniques do not require the use or presence of chlorine ions/atoms and/or chlorides or chlorine-based materials for the manufacturing process/final suspension.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 2, 2014
    Inventors: Adam R Dorfman, David A. Bryce, Maxwell A. Grace, D. Kyle Pierce, Mikhail Merzliatov, Mark G. Mortenson
  • Patent number: 8617360
    Abstract: Methods and devices for the continuous manufacture of nanop?rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 31, 2013
    Assignee: GR Intellectual Reserve, LLC
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20130259903
    Abstract: The present invention relates to novel gold nanocrystals and nanocrystal shape distributions that have surfaces that are substantially free from organic impurities or films. Specifically, the surfaces are “clean” relative to the surfaces of gold nanoparticles made using chemical reduction processes that require organic reductants and/or surfactants to grow gold nanoparticles from gold ions in solution. The invention includes novel electrochemical manufacturing apparatuses and techniques for making the gold-based nanocrystals.
    Type: Application
    Filed: July 8, 2010
    Publication date: October 3, 2013
    Inventors: Mark Gordon Mortenson, D. Kyle Pierce, David A. Bryce, Adam R. Dorfman, Reed N. Wilcox, Anthony Lockett, Mikhail Merzliakov
  • Patent number: 8540942
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: September 24, 2013
    Inventors: David Kyle Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20110005940
    Abstract: Methods and devices for the continuous manufacture of nanop?rticles, microparticles and nanoparticle/liquid solution(s) are disclosed. The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e. g., created) in a liquid (e.g., water) by utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s).
    Type: Application
    Filed: July 11, 2008
    Publication date: January 13, 2011
    Inventors: David K. Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20100187091
    Abstract: This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created and/or the liquid is predisposed to their presence (e.g., conditioned)) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 29, 2010
    Inventors: David Kyle Pierce, Mark G. Mortenson, David A. Bryce
  • Publication number: 20080277272
    Abstract: This invention relates generally to novel methods for affecting, controlling, and/or directing various reactions with and in various liquids (such as water) by creating an energy field within and/or juxtaposed to at least one surface of said liquid. An important aspect of the invention involves the creation of a plasma, which plasma is created between at least one electrode located above the surface of the liquid and at least a portion of the surface of the liquid itself, which functions as at least one second electrode. In order to permit at least a portion of the surface of the liquid to function effectively as a second electrode, at least one additional electrically conducting electrode is typically located within (e.g., at least partially submerged within) said liquid. The plasma results in a restructuring of the liquid and/or the presence of at least one active species within said liquid.
    Type: Application
    Filed: January 3, 2007
    Publication date: November 13, 2008
    Inventors: David Kyle Pierce, David A. Bryce, Mark G. Mortenson