Patents by Inventor David A. Jack

David A. Jack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933763
    Abstract: An apparatus for scanning a cylindrical part is provided. The apparatus includes an ultrasonic transducer operable to emit ultrasonic waves into and receive ultrasonic waves from the part, with the ultrasonic transducer connected to a translation stage to move it up and down the part and around the circumference of the part. The apparatus does not mechanically contact the cylindrical or maintains contact only with soft elements, such that the apparatus does not damage sensitive parts. The apparatus also contains no magnetic parts, nor any elements that rely on magnetic detection, such that the apparatus is capable of being used in the vicinity of a part exhibiting a strong magnetic field.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: March 19, 2024
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman, Ronald Eugene Nadeau, Ian Gravagne, Pruthul Kokkada Ravindranath
  • Publication number: 20240044845
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 8, 2024
    Applicant: Verifi Technologies, LLC
    Inventors: Trevor Fleck, Khaled Matalgah, Daniel Pulipati, Pruthul Kokkada Ravindranath, David A. Jack
  • Patent number: 11860131
    Abstract: The present disclosure provides a system with an ultrasonic transducer housing assembly that maintains an acoustic coupling path for spherically focused transducers while allowing the placement of the housing at angles relative to a vertical angle. This invention extends the use of spherically focused transducers into portable systems with significantly reduced system and operational costs for non-destructive testing. The transducer housing assembly features a lens housing with an opening that is sealed with a replaceable fluid-tight membrane defining an acoustic window with acoustic properties similar to those of fluid in the housing and therefore at least translucent to the transducer and causing minimal signal loss. The housing contains minimal fluid to be cleaned up in case of improper use or leakage. The transducer housing also includes an optional surface offset and an ability to adjust the focal point of the transducer relative to the component surface.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: January 2, 2024
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman, Kayla P. Garrett, Douglas E. Smith
  • Publication number: 20230408453
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as an air pocket, delamination, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting foreign objects within the 3-D image in real time or near real time and providing data regarding each object area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 21, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Publication number: 20230400377
    Abstract: The present invention is directed to an apparatus including a first central base attached to a second central base, connected by a bridge, with a space defined between the two central bases. The first central base and the second central base are each attached to a plurality of wheels extending into the space between the two central bases, with the plurality of wheels configured to translate the apparatus along a rotorcraft blade. The first central base and/or the second central base include a recess configured to receive a connection arm attached to a non-destructive scanning device. The apparatus is able to be used for ultrasonic, radiographic, eddy current, thermographic, acoustic, or visual non-destructive testing.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 14, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Gary Georgeson
  • Patent number: 11835484
    Abstract: An apparatus for scanning a cylindrical part is provided. The apparatus includes an ultrasonic transducer operable to emit ultrasonic waves into and receive ultrasonic waves from the part, with the ultrasonic transducer connected to a translation stage to move it up and down the part and around the circumference of the part. The apparatus does not mechanically contact the cylindrical or maintains contact only with soft elements, such that the apparatus does not damage sensitive parts. The apparatus also contains no magnetic parts, nor any elements that rely on magnetic detection, such that the apparatus is capable of being used in the vicinity of a part exhibiting a strong magnetic field.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: December 5, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Pruthul Kokkada Ravindranath, Nathaniel J. Blackman, Daniel Pulipati, Ian Gravagne
  • Publication number: 20230358708
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 9, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Publication number: 20230288373
    Abstract: A system and method for determining fiber orientation within a layered composite using an eddy current probe is discussed. The eddy current probe includes an array of coils that are excited such that an effective pole of the end effector of the probe moves in a ring pattern. The eddy current probe is moved across the surface of a part such that a two-dimensional scan of the part is generated, analogous to a C-scan in ultrasonic testing. The eddy current probe is able to be used to determine the fiber orientation of a layered composite material by scanning at a single point on the material. The eddy current data is able to be fused with data from an ultrasonic transducer to produce a comprehensive view of the part.
    Type: Application
    Filed: February 24, 2023
    Publication date: September 14, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: Ian Gravagne, David A. Jack, Benjamin M. Blandford, Matthew Newton, Gary Georgeson, Tonoy Chowdhury
  • Patent number: 11754529
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 12, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford
  • Publication number: 20230280310
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, William Minnie, Benjamin M. Blandford
  • Publication number: 20230280312
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: Verifi Technologies, LLC
    Inventor: David A. Jack
  • Patent number: 11726065
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as an air pocket, delamination, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting foreign objects within the 3-D image in real time or near real time and providing data regarding each object area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: August 15, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Publication number: 20230251228
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Publication number: 20230236153
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Application
    Filed: March 30, 2023
    Publication date: July 27, 2023
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Patent number: 11686707
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: June 27, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Patent number: 11650182
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 16, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, William Minnie, Benjamin M. Blandford
  • Patent number: 11650183
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: May 16, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventor: David A. Jack
  • Patent number: 11630084
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 18, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Patent number: 11619611
    Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: April 4, 2023
    Assignee: VERIFI TECHNOLOGIES, LLC
    Inventors: David A. Jack, Benjamin M. Blandford, Nathaniel J. Blackman
  • Publication number: 20220412925
    Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments distinguish between weave types that exhibit similar planar stiffness behaviors, but produce different failure mechanisms. Individual ply information is then used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence are also determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Applicant: Verifi Technologies, LLC
    Inventors: David A. Jack, John E. Fitch, Theresa Vo