Patents by Inventor David A. Markle

David A. Markle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220403646
    Abstract: A structural assembly, preferably for creation of a firewall, is constructed using anchors attached to at least a first structure and a concrete wall. Preferably, the concrete wall is also attached to a second structure as well. The body of the anchors is fabricated from a material that fails at a temperature in excess of 1,000° F. A fastening member, preferably a grommet assembly, is positioned in an elongate slot for connecting the first face to the first structure and for sliding engagement within the elongate slot in response to relative movement of the first structure and/or the second structure and the attached concrete wall.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 22, 2022
    Inventors: Frank Schwab, David A. Markle
  • Patent number: 11499306
    Abstract: The present invention provides an anchor assembly for attaching a first structure to a second structure. The anchor assembly has a body having a first face and a second face. The first face is transverse to the second face and has an elongate slot. The second face has a through hole. The body is fabricated from a material that fails at a temperature in excess of 1,000° F. A fastening member is positioned in the elongate slot for connecting the first face to the first structure and for sliding engagement with the elongate slot in response to relative movement of the first structure and the second structure.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 15, 2022
    Assignee: Thermacrete LLC
    Inventors: Frank Schwab, David A. Markle
  • Publication number: 20220349173
    Abstract: A structural assembly using at least one anchor assembly for attaching a first structure to a second structure is described. The anchor assembly has a body having a first face and a second face. The first face is transverse to the second face and has an elongate slot. The second face has a through hole. The body is fabricated from a material that fails at a temperature in excess of 1,000° F. A fastening member is positioned in the elongate slot for connecting the first face to the first structure and for sliding engagement with the elongate slot in response to relative movement of the first structure and the second structure.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Frank Schwab, David A. Markle
  • Publication number: 20210102368
    Abstract: The present invention provides an anchor assembly for attaching a first structure to a second structure. The anchor assembly has a body having a first face and a second face. The first face is transverse to the second face and has an elongate slot. The second face has a through hole. The body is fabricated from a material that fails at a temperature in excess of 1,000° F. A fastening member is positioned in the elongate slot for connecting the first face to the first structure and for sliding engagement with the elongate slot in response to relative movement of the first structure and the second structure.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 8, 2021
    Inventors: Frank Schwab, David A. Markle
  • Patent number: 9645496
    Abstract: Maskless digital lithography systems and methods with image motion compensation are disclosed. The systems include an illuminator, an image transducer and a scanning device, wherein the transducer can be upstream or downstream from the scanning device. The illuminator provides illumination light that is modulated by the image transducer. The scanning device, illuminator and image transducer are operated in synchrony so that an image formed in a photoresist layer on a moving substrate forms a photoresist pattern that is not substantially smeared.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 9, 2017
    Inventor: David A. Markle
  • Patent number: 9401278
    Abstract: Methods and apparatuses are provided for improving the intensity profile of a beam image used to process a semiconductor substrate. At least one photonic beam may be generated and manipulated to form an image having an intensity profile with an extended uniform region useful for thermally processing the surface of the substrate. The image may be scanned across the surface to heat at least a portion of the substrate surface to achieve a desired temperature within a predetermined dwell time. Such processing may achieve a high efficiency due to the large proportion of energy contained in the uniform portion of the beam.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: July 26, 2016
    Assignee: Ultratech, Inc.
    Inventors: Andrew M Hawryluk, Boris Grek, David A Markle
  • Patent number: 9329484
    Abstract: Methods of and apparatus for performing direct-write lithography in a two-color photoresist layer are disclosed. The method includes exposing the two-color photoresist layer with transducer and inhibition images that respectively define bright spots and dark spots. The transducer image generates excited-state photo-molecules while the inhibition image converts the exited-state photo-molecules to an unexcited state that is not susceptible to conversion to an irreversible exposed state. The dark spots and bright spots are aligned, with the dark spots being smaller than the bright spots so that a portion of the excited-state photo-molecules adjacent the periphery of the bright spots absorb the inhibition radiation and transition to the unexcited state while a portion of the excited photo-molecules at the center of bright spots are not exposed to the inhibition light and transition to an irreversible exposed state. This forms in the two-color photoresist layer a pattern of sub-resolution photoresist pixels.
    Type: Grant
    Filed: September 26, 2015
    Date of Patent: May 3, 2016
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, John S. Petersen
  • Publication number: 20160103394
    Abstract: Methods of and apparatus for performing direct-write lithography in a two-color photoresist layer are disclosed. The method includes exposing the two-color photoresist layer with transducer and inhibition images that respectively define bright spots and dark spots. The transducer image generates excited-state photo-molecules while the inhibition image converts the exited-state photo-molecules to an unexcited state that is not susceptible to conversion to an irreversible exposed state. The dark spots and bright spots are aligned, with the dark spots being smaller than the bright spots so that a portion of the excited-state photo-molecules adjacent the periphery of the bright spots absorb the inhibition radiation and transition to the unexcited state while a portion of the excited photo-molecules at the center of bright spots are not exposed to the inhibition light and transition to an irreversible exposed state. This forms in the two-color photoresist layer a pattern of sub-resolution photoresist pixels.
    Type: Application
    Filed: September 26, 2015
    Publication date: April 14, 2016
    Applicant: PERIODIC STRUCTURES, INC.
    Inventors: David A. Markle, John S. Petersen
  • Patent number: 9304410
    Abstract: Direct-write lithography apparatus and methods are disclosed in which a transducer image and an image of crossed interference fringe patterns are superimposed on a photoresist layer supported by a substrate. The transducer image has an exposure wavelength and contains bright spots, each corresponding to an activated pixel. The interference image has an inhibition wavelength and contains dark spots where the null points in the crossed interference fringes coincide. The dark spots are aligned with and trim the peripheries of the corresponding bright spot to form sub-resolution photoresist pixels having a size smaller than would be formed in the absence of the dark spots.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: April 5, 2016
    Assignee: Periodic Structures Inc.
    Inventors: David A. Markle, Rudolf H. Hendel, John S. Petersen, Hwan J. Jeong
  • Publication number: 20160085156
    Abstract: Maskless digital lithography systems and methods with image motion compensation are disclosed. The systems include an illuminator, an image transducer and a scanning device, wherein the transducer can be upstream or downstream from the scanning device. The illuminator provides illumination light that is modulated by the image transducer. The scanning device, illuminator and image transducer are operated in synchrony so that an image formed in a photoresist layer on a moving substrate forms a photoresist pattern that is not substantially smeared.
    Type: Application
    Filed: July 27, 2015
    Publication date: March 24, 2016
    Inventor: David A. Markle
  • Patent number: 9195139
    Abstract: Methods of and apparatus for performing direct-write lithography in a two-color photoresist layer are disclosed. The method includes exposing the two-color photoresist layer with transducer and inhibition images that respectively define bright spots and dark spots. The transducer image generates excited-state photo-molecules while the inhibition image converts the exited-state photo-molecules to an unexcited state that is not susceptible to conversion to an irreversible exposed state. The dark spots and bright spots are aligned, with the dark spots being smaller than the bright spots so that a portion of the excited-state photo-molecules adjacent the periphery of the bright spots absorb the inhibition radiation and transition to the unexcited state while a portion of the excited photo-molecules at the center of bright spots are not exposed to the inhibition light and transition to an irreversible exposed state. This forms in the two-color photoresist layer a pattern of sub-resolution photoresist pixels.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: November 24, 2015
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, John S. Petersen
  • Publication number: 20150331330
    Abstract: Direct-write lithography apparatus and methods are disclosed in which a transducer image and an image of crossed interference fringe patterns are superimposed on a photoresist layer supported by a substrate. The transducer image has an exposure wavelength and contains bright spots, each corresponding to an activated pixel. The interference image has an inhibition wavelength and contains dark spots where the null points in the crossed interference fringes coincide. The dark spots are aligned with and trim the peripheries of the corresponding bright spot to form sub-resolution photoresist pixels having a size smaller than would be formed in the absence of the dark spots.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 19, 2015
    Applicant: Periodic Structures, Inc.
    Inventors: David A. Markle, Rudolf H. Hendel, John S. Petersen, Hwan J. Jeong
  • Patent number: 9075013
    Abstract: Microscope apparatus and methods for imaging an object with a resolution beyond the Abbe limit are disclosed. The apparatus employs an object selectively patterned with a fluorescing material that is induced to fluoresce with one wavelength and inhibited from fluorescing with a second wavelength. Two orthogonal interference-fringe patterns are generated from four diffracted light beams of an inhibiting wavelength and superimposed on the object along with light that induces fluorescence. The interference-pattern image allows only sub-resolution-sized emission areas of the object to fluoresce. Multiple images of the fluorescing object are obtained, each corresponding to a slightly different position of the fringe patterns on the substrate. Each image is processed to yield a sparsely sampled super-resolution image. Multiple sparse images are interwoven to form a complete super-resolution image of the object.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: July 7, 2015
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, Hwan J. Jeong, John S. Petersen
  • Publication number: 20150185617
    Abstract: Methods of and apparatus for performing direct-write lithography in a two-color photoresist layer are disclosed. The method includes exposing the two-color photoresist layer with transducer and inhibition images that respectively define bright spots and dark spots. The transducer image generates excited-state photo-molecules while the inhibition image converts the exited-state photo-molecules to an unexcited state that is not susceptible to conversion to an irreversible exposed state. The dark spots and bright spots are aligned, with the dark spots being smaller than the bright spots so that a portion of the excited-state photo-molecules adjacent the periphery of the bright spots absorb the inhibition radiation and transition to the unexcited state while a portion of the excited photo-molecules at the center of bright spots are not exposed to the inhibition light and transition to an irreversible exposed state. This forms in the two-color photoresist layer a pattern of sub-resolution photoresist pixels.
    Type: Application
    Filed: April 4, 2014
    Publication date: July 2, 2015
    Applicant: Periodic Structures, Inc.
    Inventors: David A. Markle, John S. Petersen
  • Publication number: 20140227890
    Abstract: Methods and apparatuses are provided for improving the intensity profile of a beam image used to process a semiconductor substrate. At least one photonic beam may be generated and manipulated to form an image having an intensity profile with an extended uniform region useful for thermally processing the surface of the substrate. The image may be scanned across the surface to heat at least a portion of the substrate surface to achieve a desired temperature within a predetermined dwell time. Such processing may achieve a high efficiency due to the large proportion of energy contained in the uniform portion of the beam.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: ULTRATECH, INC.
    Inventors: Andrew M. Hawryluk, Boris Grek, David A. Markle
  • Patent number: 8742286
    Abstract: Methods and apparatuses are provided for improving the intensity profile of a beam image used to process a semiconductor substrate. At least one photonic beam may be generated and manipulated to form an image having an intensity profile with an extended uniform region useful for thermally processing the surface of the substrate. The image may be scanned across the surface to heat at least a portion of the substrate surface to achieve a desired temperature within a predetermined dwell time. Such processing may achieve a high efficiency due to the large proportion of energy contained in the uniform portion of the beam.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: June 3, 2014
    Assignee: Ultratech, Inc.
    Inventors: Andrew M Hawryluk, Boris Grek, David A Markle
  • Patent number: 8642232
    Abstract: Direct-write lithography apparatus and methods are disclosed in which a transducer image and an image of crossed interference fringe patterns are superimposed on a photoresist layer supported by a substrate. The transducer image has an exposure wavelength and contains bright spots, each corresponding to an activated pixel. The interference image has an inhibition wavelength and contains dark spots where the null points in the crossed interference fringes coincide. The dark spots are aligned with and trim the peripheries of the corresponding bright spot to form sub-resolution photoresist pixels having a size smaller than would be formed in the absence of the dark spots.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: February 4, 2014
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, Rudolf H. Hendel, John S. Petersen, Hwan J. Jeong
  • Publication number: 20130286179
    Abstract: Microscope apparatus and methods for imaging an object with a resolution beyond the Abbe limit are disclosed. The apparatus employs an object selectively patterned with a fluorescing material that is induced to fluoresce with one wavelength and inhibited from fluorescing with a second wavelength. Two orthogonal interference-fringe patterns are generated from four diffracted light beams of an inhibiting wavelength and superimposed on the object along with light that induces fluorescence. The interference-pattern image allows only sub-resolution-sized emission areas of the object to fluoresce. Multiple images of the fluorescing object are obtained, each corresponding to a slightly different position of the fringe patterns on the substrate. Each image is processed to yield a sparsely sampled super-resolution image. Multiple sparse images are interwoven to form a complete super-resolution image of the object.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 31, 2013
    Applicant: Periodic Structures, Inc.
    Inventors: David A. Markle, Hwan J. Jeong, John S. Petersen
  • Patent number: 8559014
    Abstract: High-resolution, common-path interferometric imaging systems and methods are described, wherein a light source generates and directs light toward a sample from different directions. An optical imaging system collects the resultant scattered and unscattered components. A variable phase shifting system adjusts the relative phase of the components. The interfered components are sensed by an image sensing system. The process is repeated multiple times with different phase shifts to form corresponding multiple electronic signals representative of raw sample images, which are processed by a signal processor to form a processed image. Multiple processed images, each corresponding to a different illumination azimuth angle, are combined to extend the system resolution.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: October 15, 2013
    Inventors: Hwan J. Jeong, David A. Markle
  • Publication number: 20130130182
    Abstract: Direct-write lithography apparatus and methods are disclosed in which a transducer image and an image of crossed interference fringe patterns are superimposed on a photoresist layer supported by a substrate. The transducer image has an exposure wavelength and contains bright spots, each corresponding to an activated pixel. The interference image has an inhibition wavelength and contains dark spots where the null points in the crossed interference fringes coincide. The dark spots are aligned with and trim the peripheries of the corresponding bright spot to form sub-resolution photoresist pixels having a size smaller than would be formed in the absence of the dark spots.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: Periodic Structures, Inc.
    Inventors: David A. Markle, Rudolf H. Hendel, John S. Petersen