Patents by Inventor David A. Markle

David A. Markle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7514305
    Abstract: Methods and apparatuses are provided for improving the intensity profile of a beam image used to process a semiconductor substrate. At least one photonic beam may be generated and manipulated to form an image having an intensity profile with an extended uniform region useful for thermally processing the surface of the substrate. The image may be scanned across the surface to heat at least a portion of the substrate surface to achieve a desired temperature within a predetermined dwell time. Such processing may achieve a high efficiency due to the large proportion of energy contained in the uniform portion of the beam.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 7, 2009
    Assignee: Ultratech, Inc.
    Inventors: Andrew M. Hawryluk, Boris Grek, David A. Markle
  • Patent number: 7494942
    Abstract: A method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes preheating a portion of the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the portion of the substrate with the annealing radiation to generate a temperature capable of annealing the portion of the substrate.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: February 24, 2009
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, David A. Markle
  • Publication number: 20080173620
    Abstract: Apparatuses and methods are provided for processing a substrate having an upper surface that includes a central region, a peripheral region, and an edge adjacent to the peripheral region. An image having an intensity sufficient to effect thermal processing of the substrate is scanned across the upper surface of the substrate. The image scanning geometry allows processing the central region of the substrate at a substantially uniform temperature without damaging the outer edge. In some instances, the image may be formed from a beam traveling over at least a portion of the central region so that no portion thereof directly illuminates any portion of the edge when the image is scanned across the periphery region. The substrate may be rotated 180° or the beam direction may be switched after part of the scanning operation has been completed.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 24, 2008
    Applicant: ULTRATECH, INC.
    Inventors: Boris Grek, David A. Markle
  • Patent number: 7399945
    Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: July 15, 2008
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, David A. Markle
  • Patent number: 7326877
    Abstract: Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: February 5, 2008
    Assignee: Ultratech, Inc.
    Inventors: Iqbal A. Shareef, Igor Landau, David A. Markle, Somit Talwar, Michael O. Thompson, Ivelin A. Angelov, Senquan Zhou
  • Patent number: 7253376
    Abstract: Methods and apparatus for truncating an image formed with coherent radiation. The optical relay system is adapted to form a line image at the image plane. The image is truncated by a variable aperture at or near the aperture plane conjugate to the image plane, to block progressively increasing portions of an incident coherent radiation beam used to form the line image. An apodizing pupil filter having a maximum transmission or reflection in the center and a transmission or reflection profile that varies with direction corresponding to long direction of the line image is provided in the pupil plane. The apodization is designed to prevent hot-spots from forming in the truncated image and ensures a relatively smooth, flat intensity profile. Thus, one end or another of a coherent line image scanned over a substrate can be truncated during scanning without substantially changing the image intensity extending into the product area.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 7, 2007
    Assignee: Ultratech, Inc.
    Inventors: Shiyu Zhang, Igor Landau, Arnold Lungershausen, David A. Markle, Casey Donaher
  • Patent number: 7238915
    Abstract: Methods and apparatus (100) for scanning a surface (12) of a substrate (10) with an obliquely incident radiation beam (20) over a select scan path (210) to avoid damage (30) to the curved edge (14) of the substrate. The methods and apparatus allow for the substrate edge to be irradiated with the full intensity of the radiation beam, provided that the edge crossing positions avoid a region where the polar angle is less than a scan path critical (SPC) polar angle (?C). At the SPC polar angle the temperatures produced by scanning the beam on the substrate surface and on the edge are the same. The scan path is arranged so the edge crossing positions are located where the polar angle corresponding to each meets or exceeds the SPC polar angle. Ensuring that the substrate edge temperature (TE) remains at or below the substrate surface temperature (TS). The invention has particular utility in laser thermal processing (LTP) of circular silicon substrates when forming transistor-based integrated circuits.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 3, 2007
    Assignee: Ultratech, Inc.
    Inventors: Boris Grek, David A. Markle
  • Publication number: 20070068908
    Abstract: Methods and apparatus (100) for scanning a surface (12) of a substrate (10) with an obliquely incident radiation beam (20) over a select scan path (210) to avoid damage (30) to the curved edge (14) of the substrate. The methods and apparatus allow for the substrate edge to be irradiated with the full intensity of the radiation beam, provided that the edge crossing positions avoid a region where the polar angle is less than a scan path critical (SPC) polar angle (?C). At the SPC polar angle the temperatures produced by scanning the beam on the substrate surface and on the edge are the same. The scan path is arranged so the edge crossing positions are located where the polar angle corresponding to each meets or exceeds the SPC polar angle. Ensuring that the substrate edge temperature (TE) remains at or below the substrate surface temperature (TS). The invention has particular utility in laser thermal processing (LTP) of circular silicon substrates when forming transistor-based integrated circuits.
    Type: Application
    Filed: September 26, 2005
    Publication date: March 29, 2007
    Inventors: Boris Grek, David Markle
  • Publication number: 20070051708
    Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
    Type: Application
    Filed: November 3, 2006
    Publication date: March 8, 2007
    Inventors: Somit Talwar, David Markle
  • Publication number: 20070004232
    Abstract: Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
    Type: Application
    Filed: December 1, 2004
    Publication date: January 4, 2007
    Inventors: Iqbal Shareef, Igor Landau, David Markle, Somit Talwar, Michael Thompson, Ivelin Angelov, Senquan Zhou
  • Patent number: 7157660
    Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: January 2, 2007
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson, David A. Markle
  • Patent number: 7154066
    Abstract: Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: December 26, 2006
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, David A. Markle
  • Patent number: 7148159
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: December 12, 2006
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, Michael O. Thompson, Boris Grek, David A. Markle
  • Publication number: 20060255017
    Abstract: Methods and apparatus for remotely measuring the temperature of a specular surface are disclosed. The method includes taking two different measurements of P-polarized radiation emitted from the surface at or near the Brewster angle associated with the surface. The first measurement (SA) collects and detects a first amount of radiation emitted directly from a surface portion using a collection optical system. The second measurement (SB) includes the first amount of radiation and adds a quantity of radiation collected at or near the Brewster angle and reflected from the surface. This is accomplished with a retro optical system with a round-trip transmission t2 that retro-reflects a quantity of radiation received from the surface portion back to the same surface portion where it is reflected and combined with the first amount of radiation collected by the collection optical system. Measurements SA and SB and the transmission, t2, are used to determine the surface emissivity (?).
    Type: Application
    Filed: May 16, 2005
    Publication date: November 16, 2006
    Inventor: David Markle
  • Publication number: 20060252282
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Application
    Filed: July 6, 2006
    Publication date: November 9, 2006
    Inventors: Somit Talwar, David Markle
  • Publication number: 20060246694
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Application
    Filed: June 29, 2006
    Publication date: November 2, 2006
    Inventors: Somit Talwar, Michael Thompson, Boris Grek, David Markle
  • Patent number: 7098155
    Abstract: Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: August 29, 2006
    Assignee: Ultratech, Inc.
    Inventors: Somit Talwar, David A. Markle
  • Publication number: 20060163223
    Abstract: Methods and apparatus for truncating an image formed with coherent radiation. The optical relay system is adapted to form a line image at the image plane. The image is truncated by a variable aperture at or near the aperture plane conjugate to the image plane, to block progressively increasing portions of an incident coherent radiation beam used to form the line image. An apodizing pupil filter having a maximum transmission or reflection in the center and a transmission or reflection profile that varies with direction corresponding to long direction of the line image is provided in the pupil plane. The apodization is designed to prevent hot-spots from forming in the truncated image and ensures a relatively smooth, flat intensity profile. Thus, one end or another of a coherent line image scanned over a substrate can be truncated during scanning without substantially changing the image intensity extending into the product area.
    Type: Application
    Filed: January 21, 2005
    Publication date: July 27, 2006
    Inventors: Shiyu Zhang, Igor Landau, Arnold Lungershausen, David Markle, Casey Donaher
  • Publication number: 20060113290
    Abstract: A chuck for supporting a wafer and maintaining a constant background temperature across the wafer during laser thermal processing (LTP) is disclosed. The chuck includes a heat sink and a thermal mass in the form of a heater module. The heater module is in thermal communication with the heat sink, but is physically separated therefrom by a thermal insulator layer. The thermal insulator maintains a substantially constant power loss at least equal to the maximum power delivered by the laser, less that lost by radiation and convection. A top plate is arranged atop the heater module, supports the wafer to be processed, and provides a contamination barrier. The heater module is coupled to a power supply that is adapted to provide varying amounts of power to the heater module to maintain the heater module at the constant background temperature even when the wafer experiences a spatially and temporally varying heat load from an LTP laser beam.
    Type: Application
    Filed: December 1, 2004
    Publication date: June 1, 2006
    Inventors: Iqbal Shareef, Igor Landau, David Markle, Somit Talwar, Michael Thompson, Ivelin Angelov, Senquan Zhou
  • Publication number: 20060091120
    Abstract: Recycling optical systems and methods for thermal processing of substrates using same are disclosed. The recycling optical system collects radiation provided to the substrate via an annealing radiation beam and reflected from the substrate. The recycling optical system collects the reflected radiation and returns the collected reflected radiation back through the system as recycled radiation. The recycled radiation is returned to the same region of the substrate from which it reflected—preferably to within the thermal diffusion distance associated with scanning the radiation beam over the substrate. The recycling system preserves the polarization and the incidence angle of the directly incident radiation, while avoiding returning radiation back to the source where it might cause radiation source instability.
    Type: Application
    Filed: October 24, 2005
    Publication date: May 4, 2006
    Inventor: David Markle