Patents by Inventor David A. Schatz

David A. Schatz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922678
    Abstract: Training an estimation model using soft labels includes receiving an image. It further includes generating a continuous target map corresponding to the image that includes hard labels and soft labels. A model is trained using the corresponding continuous target map.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: March 5, 2024
    Assignee: Descartes Labs, Inc.
    Inventors: Kyle Tyler Story, Jason David Schatz, Manuel Weber
  • Patent number: 11867678
    Abstract: A test device for a detector for detecting gas or a gas/particle mixture, includes a joining means for joining the test device to the detector; a container configured so as to receive a gas or a test gas/particle mixture; a diffusion means associated with the container and designed to diffuse the gas or the test gas/particle mixture in the detector; an energy source; and a radio apparatus able to manage local radio communication in order to remotely trigger the diffusion of the gas or of the test gas/particle mixture in the diffusion means from a control means. A test system comprising at least one test device, at least one radio gateway, a control network comprising a control unit able to remotely control the test device and at least one communication link between the control unit and the radio gateway, said gateway being able to connect the radio apparatus and the control network.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 9, 2024
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Christophe Dall'Omo, David Schatz, Roland Pelisson, Nicolas Deparis, Norbert Daniele
  • Publication number: 20230351732
    Abstract: Training an estimation model using soft labels includes receiving an image. It further includes generating a continuous target map corresponding to the image that includes hard labels and soft labels. A model is trained using the corresponding continuous target map.
    Type: Application
    Filed: April 26, 2023
    Publication date: November 2, 2023
    Inventors: Kyle Tyler Story, Jason David Schatz, Manuel Weber
  • Publication number: 20210396728
    Abstract: A test device for a detector for detecting gas or a gas/particle mixture, includes a joining means for joining the test device to the detector; a container configured so as to receive a gas or a test gas/particle mixture; a diffusion means associated with the container and designed to diffuse the gas or the test gas/particle mixture in the detector; an energy source; and a radio apparatus able to manage local radio communication in order to remotely trigger the diffusion of the gas or of the test gas/particle mixture in the diffusion means from a control means. A test system comprising at least one test device, at least one radio gateway, a control network comprising a control unit able to remotely control the test device and at least one communication link between the control unit and the radio gateway, said gateway being able to connect the radio apparatus and the control network.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Inventors: Christophe DALL'OMO, David SCHATZ, Roland PELISSON, Nicolas DEPARIS, Norbert DANIELE
  • Patent number: 10905371
    Abstract: Introduced here is technology to monitor moisture levels in a hygiene product, such as tampons, pads, menstrual cups, child diapers, adult diapers etc. According to one embodiment, a moisture sensor is inserted inside a feminine hygiene product. The moisture sensor is connected to a wearable device that gathers the moisture data and sends the data to a mobile device, such as a cell phone. The cell phone generates notifications to the user, such as percentage saturation of the feminine hygiene product, message to change the feminine hygiene product, expected start and end dates of the next menstrual cycle, etc. According to another embodiment, the moisture sensor can be inserted in other hygiene products, such as child diapers or adult diapers, to measure the amount of urination, defecation, or other excretions, and to generate notifications to the user, the user's caretaker, or a third party.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: February 2, 2021
    Assignee: my.Flow, Inc.
    Inventors: Amanda Karen Brief, Madeeha Ghori, Katie Chen, Tomas Alfonso Vega Galvez, Drake Myers, Jacob David Schatz McEntire
  • Patent number: 10230243
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices. In embodiments reconfigurable or flexible attachment between a source and a device is realized using permanent magnets or electromagnets. Magnetic material may be positioned on or around one or more of the resonator to provide for locations for attaching permanent magnets. A permanent magnet attached to or near one of a source or device or repeater resonators may be used to flexibly attach to the non-lossy magnetic material of another resonator structure. In embodiments, replacing lossy permanent magnets and/or electromagnets in even one of the resonators of a wireless power system may be advantageous to system performance.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 12, 2019
    Assignee: WiTricity Corporation
    Inventors: David A. Schatz, Herbert T. Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello
  • Patent number: 10084348
    Abstract: Wireless energy transfer apparatus include, in at least one aspect, a device resonator configured to supply power for a load by receiving wirelessly transferred power from a source resonator; a temperature sensor positioned to measure a temperature of a component of the apparatus; a tunable component coupled to the device resonator to adjust a resonant frequency of the device resonator, an effective impedance the device resonator, or both; and control circuitry configured to, in response to detecting a temperature condition using the temperature sensor, (i) tune the tunable component to adjust the resonant frequency of the device resonator, the effective impedance of the device resonator, or both, and (ii) signal the source resonator regarding the temperature condition to cause an adjustment of a resonant frequency of the source resonator, a power output of the source resonator, or both.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 25, 2018
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Publication number: 20180115168
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices. In embodiments reconfigurable or flexible attachment between a source and a device is realized using permanent magnets or electromagnets. Magnetic material may be positioned on or around one or more of the resonator to provide for locations for attaching permanent magnets. A permanent magnet attached to or near one of a source or device or repeater resonators may be used to flexibly attach to the non-lossy magnetic material of another resonator structure. In embodiments, replacing lossy permanent magnets and/or electromagnets in even one of the resonators of a wireless power system may be advantageous to system performance.
    Type: Application
    Filed: October 27, 2017
    Publication date: April 26, 2018
    Inventors: David A. Schatz, Herbert T. Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello
  • Patent number: 9806541
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices. In embodiments reconfigurable or flexible attachment between a source and a device is realized using permanent magnets or electromagnets. Magnetic material may be positioned on or around one or more of the resonator to provide for locations for attaching permanent magnets. A permanent magnet attached to or near one of a source or device or repeater resonators may be used to flexibly attach to the non-lossy magnetic material of another resonator structure. In embodiments, replacing lossy permanent magnets and/or electromagnets in even one of the resonators of a wireless power system may be advantageous to system performance.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: October 31, 2017
    Assignee: WiTricity Corporation
    Inventors: David A. Schatz, Herbert T. Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello
  • Publication number: 20170263374
    Abstract: Described herein are improved configurations for a device for wireless power transfer that includes a conductor forming at least one loop of a high-Q resonator, a capacitive part electrically coupled to the conductor, and a power and control circuit electrically coupled to the conductor, the power and control circuit providing two or more modes of operation and the power and control circuit selecting how the high-Q resonator receives and generates an oscillating magnetic field.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 14, 2017
    Inventors: David A. Schatz, Katherine L. Hall, Morris P. Kesler, Andre B. Kurs, Konrad J. Kulikowski
  • Patent number: 9744858
    Abstract: Described herein are improved capabilities for a system and method for wireless energy distribution to a mechanically removable vehicle seat, comprising a source resonator coupled to an energy source of a vehicle, the source resonator positioned proximate to the mechanically removable vehicle seat, the source resonator generating an oscillating magnetic field with a resonant frequency and comprising a high-conductivity material adapted and located between the source resonator and a vehicle surface to direct the oscillating magnetic field away from the vehicle surface, and a receiving resonator integrated into the mechanically removable vehicle seat, the receiving resonator having a resonant frequency similar to that of the source resonator, and receiving wireless energy from the source resonator, and providing power to electrical components integrated with the mechanically removable vehicle seat.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: August 29, 2017
    Assignee: WiTricity Corporation
    Inventors: Katherine L. Hall, Konrad J. Kulikowski, Morris P. Kesler, Andre B. Kurs, Steven J. Ganem, David A. Schatz, Eric R. Giler
  • Publication number: 20170150917
    Abstract: Introduced here is technology to monitor moisture levels in a hygiene product, such as tampons, pads, menstrual cups, child diapers, adult diapers etc. According to one embodiment, a moisture sensor is inserted inside a feminine hygiene product. The moisture sensor is connected to a wearable device that gathers the moisture data and sends the data to a mobile device, such as a cell phone. The cell phone generates notifications to the user, such as percentage saturation of the feminine hygiene product, message to change the feminine hygiene product, expected start and end dates of the next menstrual cycle, etc. According to another embodiment, the moisture sensor can be inserted in other hygiene products, such as child diapers or adult diapers, to measure the amount of urination, defecation, or other excretions, and to generate notifications to the user, the user's caretaker, or a third party.
    Type: Application
    Filed: May 13, 2016
    Publication date: June 1, 2017
    Inventors: Amanda Karen Brief, Madeeha Ghori, Katie Chen, Tomas Vega, Drake Myers, Jacob David Schatz McEntire
  • Patent number: 9662161
    Abstract: Wireless energy transfer devices and systems for medical environments include, in at least some implementations, a wirelessly powered surgical device including: a device resonator configured to generate an oscillating voltage from a captured oscillating magnetic field; and a surgical tool electrically coupled to the device resonator, the surgical tool having a functional output that is capable of being directly powered by the oscillating voltage, and the surgical tool having a rechargeable battery backup; wherein the oscillating voltage is at least 30 volts and has a frequency of at least 1 kHz. Wireless energy transfer is utilized to eliminate cords and power cables from operating instruments and electronic equipment, facilitating mobility.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: May 30, 2017
    Assignee: WiTricity Corporation
    Inventors: Steven J. Ganem, Morris P. Kesler, Katherine L. Hall, David A. Schatz
  • Patent number: 9601261
    Abstract: Described herein are improved configurations for a device for wireless power transfer that includes a conductor forming at least one loop of a high-Q resonator, a capacitive part electrically coupled to the conductor, and a power and control circuit electrically coupled to the conductor, the power and control circuit providing two or more modes of operation and the power and control circuit selecting how the high-Q resonator receives and generates an oscillating magnetic field.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: March 21, 2017
    Assignee: WiTricity Corporation
    Inventors: David A. Schatz, Katherine L. Hall, Morris P. Kesler, Andre B. Kurs, Konrad J. Kulikowski
  • Publication number: 20170054319
    Abstract: Wireless energy transfer apparatus include, in at least one aspect, a device resonator configured to supply power for a load by receiving wirelessly transferred power from a source resonator; a temperature sensor positioned to measure a temperature of a component of the apparatus; a tunable component coupled to the device resonator to adjust a resonant frequency of the device resonator, an effective impedance the device resonator, or both; and control circuitry configured to, in response to detecting a temperature condition using the temperature sensor, (i) tune the tunable component to adjust the resonant frequency of the device resonator, the effective impedance of the device resonator, or both, and (ii) signal the source resonator regarding the temperature condition to cause an adjustment of a resonant frequency of the source resonator, a power output of the source resonator, or both.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 23, 2017
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Patent number: 9577436
    Abstract: Described herein are improved configurations for a wireless power transfer. Described are methods and designs for implantable electronics and devices. Wireless energy transfer is utilized to eliminate cords and power cables puncturing the skin to power an implantable device. Repeater resonators are employed to improve the power transfer characteristics between the source and the device resonators.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 21, 2017
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Patent number: 9496719
    Abstract: Wireless energy transfer methods and designs for implantable electronics and devices include, in at least one aspect, a device resonator configured to be included in an implantable medical device and supply power for a load of the implantable medical device by receiving wirelessly transferred power from a source resonator coupled with a power source; temperature sensors positioned to measure temperatures of the device resonator at different locations; a tunable component coupled to the device resonator; and control circuitry configured and arranged to adjust the tunable component to detune the device resonator in response to a measurement from at least one of the temperature sensors.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 15, 2016
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Publication number: 20160221441
    Abstract: Described herein are improved capabilities for a system and method for wireless energy distribution to a mechanically removable vehicle seat, comprising a source resonator coupled to an energy source of a vehicle, the source resonator positioned proximate to the mechanically removable vehicle seat, the source resonator generating an oscillating magnetic field with a resonant frequency and comprising a high-conductivity material adapted and located between the source resonator and a vehicle surface to direct the oscillating magnetic field away from the vehicle surface, and a receiving resonator integrated into the mechanically removable vehicle seat, the receiving resonator having a resonant frequency similar to that of the source resonator, and receiving wireless energy from the source resonator, and providing power to electrical components integrated with the mechanically removable vehicle seat.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 4, 2016
    Inventors: Katherine L. Hall, Konrad J. Kulikowski, Morris P. Kesler, Andre B. Kurs, Steven J. Ganem, David A. Schatz, Eric R. Giler
  • Patent number: 9318922
    Abstract: Described herein are improved capabilities for a system and method for wireless energy distribution to a mechanically removable vehicle seat, comprising a source resonator coupled to an energy source of a vehicle, the source resonator positioned proximate to the mechanically removable vehicle seat, the source resonator generating an oscillating magnetic field with a resonant frequency and comprising a high-conductivity material adapted and located between the source resonator and a vehicle surface to direct the oscillating magnetic field away from the vehicle surface, and a receiving resonator integrated into the mechanically removable vehicle seat, the receiving resonator having a resonant frequency similar to that of the source resonator, and receiving wireless energy from the source resonator, and providing power to electrical components integrated with the mechanically removable vehicle seat.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 19, 2016
    Assignee: WiTricity Corporation
    Inventors: Katherine L. Hall, Konrad Kulikowski, Morris P. Kesler, Andre B. Kurs, Steve J. Ganem, David A. Schatz, Eric R. Giler
  • Publication number: 20160028243
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices. In embodiments reconfigurable or flexible attachment between a source and a device is realized using permanent magnets or electromagnets. Magnetic material may be positioned on or around one or more of the resonator to provide for locations for attaching permanent magnets. A permanent magnet attached to or near one of a source or device or repeater resonators may be used to flexibly attach to the non-lossy magnetic material of another resonator structure. In embodiments, replacing lossy permanent magnets and/or electromagnets in even one of the resonators of a wireless power system may be advantageous to system performance.
    Type: Application
    Filed: July 24, 2015
    Publication date: January 28, 2016
    Inventors: David A. Schatz, Herbert T. Lou, Morris P. Kesler, Katherine L. Hall, Konrad Kulikowski, Eric R. Giler, Ron Fiorello