Patents by Inventor David A. Weitz

David A. Weitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566214
    Abstract: Systems and methods generating physiologic models that can produce functional biological substances are provided. In some aspects, a system includes a substrate and a first and second channel formed therein. The channels extend longitudinally and are substantially parallel to each other. A series of apertures extend between the first channel and second channel to create a fluid communication path passing through columns separating the channels that extends further along the longitudinal dimension than other dimensions. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate, wherein the first channel flow rate and the second channel flow rate create a differential configured to generate physiological shear rates within a predetermined range in the channels.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: January 31, 2023
    Assignees: BRIGHAM AND WOMEN'S HOSPITAL, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, VILNIUS UNIVERSITY
    Inventors: Jonathan N. Thon, Joseph E. Italiano, Linas Mazutis, David A. Weitz
  • Patent number: 11566279
    Abstract: The present invention generally relates to a combination of molecular barcoding and emulsion-based microfluidics to isolate, lyse, barcode, and prepare nucleic acids from individual cells in a high-throughput manner.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 31, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Aviv Regev, Evan Zane Macosko, Steven Andrew McCarroll, Alexander K. Shalek, Anindita Basu, Christopher B. Ford, Hongkun Park, David A. Weitz
  • Patent number: 11559806
    Abstract: The present invention generally relates to the manipulation of species using acoustic waves such as surface acoustic waves. In some aspects, a channel such as a microfluidic channel may be provided having two or more outlets, and acoustic waves applied to species within the channel to determine which outlet the species is directed to. For instance, surface acoustic waves may be applied to a species such as a cell or a particle to deflect it from the channel into a groove or other portion that directs it to a different outlet. In some cases, surprisingly, this deflection of species may be in a different direction than the incident acoustic waves on the channel. Other embodiments of the present invention are generally directed to kits including such systems, techniques for producing such systems, or the like.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: January 24, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Warren Lloyd Ung, Thomas Franke
  • Publication number: 20230009208
    Abstract: A system and method are provided for harvesting target biological substances. The system includes a substrate and a first and second channel formed in the substrate. The channels longitudinally extending substantially parallel to each other. A series of gaps extend from the first channel to the second channel to create a fluid communication path passing between a series of columns with the columns being longitudinally separated by a predetermined separation distance. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate. The sources are configured to create a differential between the first and second channel flow rates to generate physiological shear rates along the second channel that are bounded within a predetermined range.
    Type: Application
    Filed: June 24, 2022
    Publication date: January 12, 2023
    Inventors: Joseph Italiano, Linas Mazutis, Jonathan N. Thon, David A. Weitz
  • Publication number: 20220396835
    Abstract: The present invention is generally related to systems and methods for producing a plurality of droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, the fluidic droplets may be rigidified to form rigidified droplets (e.g., gel droplets). In certain embodiments, the droplets may undergo a phase change (e.g., from rigidified droplets to fluidized droplets), as discussed more herein. In some cases, a species may be added internally to a droplet by exposing the droplet to a fluid comprising a plurality of species.
    Type: Application
    Filed: June 24, 2022
    Publication date: December 15, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti
  • Patent number: 11517864
    Abstract: Parallel uses of microfluidic methods and devices for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid are described. In some aspects, the present invention relates generally to flow-focusing-type technology, and also to microfluidics, and more particularly parallel use of microfluidic systems arranged to control a dispersed phase within a dispersant, and the size, and size distribution, of a dispersed phase in a multi-phase fluid system, and systems for delivery of fluid components to multiple such devices.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: December 6, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Mark Romanowsky, Adam R. Abate
  • Patent number: 11498072
    Abstract: The present invention relates to systems and methods for the arrangement of droplets in pre-determined locations. Many applications require the collection of time-resolved data. Examples include the screening of cells based on their growth characteristics or the observation of enzymatic reactions. The present invention provides a tool and related techniques which addresses this need, and which can be used in many other situations. The invention provides, in one aspect, a tool that allows for stable storage and indexing of individual droplets. The invention can interface not only with microfluidic/microscale equipment, but with macroscopic equipment to allow for the easy injection of liquids and extraction of sample droplets, etc.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 15, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Christian Boehm, Amy Rowat, Sarah Koester, Jeremy Agresti
  • Publication number: 20220354796
    Abstract: The subject invention pertains to methods to produce amorphous materials at nanometer scale, by solidifying or hardening the materials inside nanometer-sized pores of porous media (i.e., porous templates). The porous templates can be made by packing nanometer-sized particles or other means. The subject invention further pertains to methods to produce the porous templates used to produce amorphous material at nanometer scale.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Inventors: Lei XU, David WEITZ, Zhuo XU, Changliang ZHU
  • Publication number: 20220331804
    Abstract: The present invention generally relates to systems and techniques for manipulating fluids and/or making droplets. In certain aspects, the present invention generally relates to droplet production. The droplets may be formed from fluids from different sources. In one set of embodiments, the present invention is directed to a microfluidic device comprising a plurality of droplet-making units, and/or other fluidic units, which may be substantially identical in some cases. Substantially each of the fluidic units may be in fluidic communication with a different source of a first fluid and a common source of a second fluid, in certain embodiments. In one aspect, substantially the same pressure may be applied to substantially all of the different sources of fluid, which may be used to cause fluid to move from the different sources into the microfluidic device. In some cases, the fluids may interact within the fluidic units, e.g., by reacting, or for the production of droplets within the microfluidic device.
    Type: Application
    Filed: June 10, 2022
    Publication date: October 20, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Ralph Alexander Sperling, Adam R. Abate
  • Publication number: 20220325271
    Abstract: Described herein are methods, uses, and kits for droplet-based single cell sequencing of nucleic acids from extracellular vesicles. Specifically, the disclosure provides methods of analyzing protein compositions from individual extracellular vesicles (EVs) from biological samples including pluralities of EVs, the methods comprising labeling the EVs with antibody-DNA conjugates; encapsulating the labeled EVs, barcoded beads, and an extension reagent mix into droplets; within one or more of the droplets, hybridizing the antibody-DNA conjugates with a hybridization region in the barcoded beads; generating RNA from the DNA; synthesizing cDNA from the RNA; amplifying and sequencing the cDNA from one or more individual EVs from the biological sample; and analyzing the sequence of the cDNA from individual EVs to define their protein composition.
    Type: Application
    Filed: September 28, 2020
    Publication date: October 13, 2022
    Inventors: Jina Ko, Ralph Weissleder, Yongcheng Wang, David A. Weitz
  • Publication number: 20220274072
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Publication number: 20220241198
    Abstract: The present invention generally relates to polymers and, in particular, to copolymers for stabilizing, e.g., emulsions or droplets. In certain aspects, the copolymers may comprise a relatively hydrophobic monomer and a relatively hydrophilic monomer polymerized together (e.g., randomly) to form the copolymer. Examples of hydrophobic monomers include methacrylates and vinylphenyls; examples of hydrophilic monomers include boronic acids or acid derivatives. Surprisingly, such random copolymers may act as surfactants, e.g., stabilizing droplets within the emulsion. In addition, in some cases, an interfacial film may be produced by exposing the copolymer to a complexing molecule, such as a polyol, that can complex with the copolymer to form the film. In some cases, the film may at least partially surround a droplet, and in certain embodiments, the film may be sufficiently sturdy such that the droplet can be removed from the emulsion.
    Type: Application
    Filed: May 22, 2020
    Publication date: August 4, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Joerg G. Werner, Julie V. Brouchon, John Heyman, Brendan Deveney
  • Patent number: 11401550
    Abstract: The present invention is generally related to systems and methods for producing a plurality of droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, the fluidic droplets may be rigidified to form rigidified droplets (e.g., gel droplets). In certain embodiments, the droplets may undergo a phase change (e.g., from rigidified droplets to fluidized droplets), as discussed more herein. In some cases, a species may be added internally to a droplet by exposing the droplet to a fluid comprising a plurality of species.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: August 2, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti
  • Patent number: 11396016
    Abstract: A system and method are provided for harvesting target biological substances. The system includes a substrate and a first and second channel formed in the substrate. The channels longitudinally extending substantially parallel to each other. A series of gaps extend from the first channel to the second channel to create a fluid communication path passing between a series of columns with the columns being longitudinally separated by a predetermined separation distance. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate. The sources are configured to create a differential between the first and second channel flow rates to generate physiological shear rates along the second channel that are bounded within a predetermined range.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: July 26, 2022
    Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College, Vilnius University
    Inventors: Joseph Italiano, Linas Mazutis, Jonathan Thon, David A. Weitz
  • Patent number: 11389800
    Abstract: The present invention generally relates to systems and techniques for manipulating fluids and/or making droplets. In certain aspects, the present invention generally relates to droplet production. The droplets may be formed from fluids from different sources. In one set of embodiments, the present invention is directed to a microfluidic device comprising a plurality of droplet-making units, and/or other fluidic units, which may be substantially identical in some cases. Substantially each of the fluidic units may be in fluidic communication with a different source of a first fluid and a common source of a second fluid, in certain embodiments. In one aspect, substantially the same pressure may be applied to substantially all of the different sources of fluid, which may be used to cause fluid to move from the different sources into the microfluidic device. In some cases, the fluids may interact within the fluidic units, e.g., by reacting, or for the production of droplets within the microfluidic device.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: July 19, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Ralph Alexander Sperling, Adam R. Abate, David A. Weitz
  • Patent number: 11383234
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: July 12, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20220212194
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one set of embodiments, droplets may be sorted using surface acoustic waves. The droplets may contain cells or other species. In some cases, the surface acoustic waves may be created using a surface acoustic wave generator such as an interdigitated transducer, and/or a material such as a piezoelectric substrate. The piezoelectric substrate may be isolated front the microfluidic substrate except at or proximate the location where the droplets arc sorted, e.g., into first or second microfluidic channels. At such locations, the microfluidic substrate may be coupled to the piezoelectric substrate (or other material) by one or more coupling regions. In some cases, relatively high sorting rates may be achieved, e.g., at rates of at least about 1,000 Hz, at least about 10,000 Hz, or at least about 100,000 Hz, and in some embodiments, with high cell viability after sorting.
    Type: Application
    Filed: December 14, 2021
    Publication date: July 7, 2022
    Applicants: President and Fellows of Harvard College, Universität Augsburg
    Inventors: David A. Weitz, Thomas Franke, Achim Wixforth, Lothar Schmid, Jeremy Agresti, Adam R. Abate
  • Publication number: 20220202727
    Abstract: The present invention provides injectable compositions comprising cells encapsulated in hydrogel capsules and methods of preparing these compostions. The present invention also provides methods for using these compositions to promote hematopoiesis and to treat or prevent cardiovascular and immunological disorders in a subject.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 30, 2022
    Inventors: Jae-Won Shin, Angelo S. Mao, Stefanie Utech, David A. Weitz, David J. Mooney, Oktay R. Uzun
  • Patent number: 11358105
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 14, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Publication number: 20220097067
    Abstract: This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 31, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Manuel Marquez-Sanchez, Zhengdong Cheng