Patents by Inventor David A. Weitz

David A. Weitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220065849
    Abstract: A method for identifying cognate pairs of a ligand species and a receptor species includes co-compartmentalizing ligand species and receptor species, forming a set of microreactors, each microreactor including a ligand species and preferably a receptor species; assaying the recognition between ligands and receptors in each microreactor and based on this assay, classifying each microreactor as positive when a ligand species and receptor species in the microreactor recognize one with the other or negative when no ligand species and no receptor species recognize in the microreactor; identifying ligand species and receptor species contained in each positive microreactor; establishing a subset of positive microreactors containing the same receptor species; determining the probability that the ligand species recognizing the receptor species corresponds to the most frequent co-compartmentalized ligand species.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 3, 2022
    Inventors: Andrew GRIFFITHS, Sebastien AMIGORENA, Olivier LANTZ, David WEITZ, Philippe NGHE, Annabelle GERARD
  • Patent number: 11229607
    Abstract: The present invention provides injectable compositions comprising cells encapsulated in hydrogel capsules and methods of preparing these compositions. The present invention also provides methods for using these compositions to promote hematopoiesis and to treat or prevent cardiovascular and immunological disorders in a subject.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 25, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Jae-Won Shin, Angelo S. Mao, Stefanie Utech, David A. Weitz, David J. Mooney, Oktay Uzun
  • Patent number: 11229911
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one set of embodiments, droplets may be sorted using surface acoustic waves. The droplets may contain cells or other species. In some cases, the surface acoustic waves may be created using a surface acoustic wave generator such as an interdigitated transducer, and/or a material such as a piezoelectric substrate. The piezoelectric substrate may be isolated from the microfluidic substrate except at or proximate the location where the droplets are sorted, e.g., into first or second microfluidic channels. At such locations, the microfluidic substrate may be coupled to the piezoelectric substrate (or other material) by one or more coupling regions. In some cases, relatively high sorting rates may be achieved, e.g., at rates of at least about 1,000 Hz, at least about 10,000 Hz, or at least about 100,000 Hz, and in some embodiments, with high cell viability after sorting.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 25, 2022
    Assignees: President and Fellows of Harvard College, Universität Augsburg
    Inventors: David A. Weitz, Thomas Franke, Achim Wixforth, Lothar Schmid, Jeremy Agresti, Adam R. Abate
  • Patent number: 11224876
    Abstract: Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 18, 2022
    Assignees: Brandeis University, President and Fellows of Harvard College
    Inventors: Seth Fraden, Hakim Boukellal, Yanwei Jia, Seila Selimovic, Amy Rowat, Jeremy Agresti, David A. Weitz
  • Publication number: 20220002554
    Abstract: A pigment comprising a plurality of photonic crystal particles dispersed in a medium, each photonic crystal particles containing a plurality of spectrally selective absorbing components dispersed within each photonic crystal particle that selectively absorb electromagnetic radiation without substantially absorbing electromagnetic radiation near a resonant wavelength of each photonic crystal particle, wherein each photonic crystal particle has a predetermined minimum number of repeat units of a photonic crystal structure, wherein the predetermined minimum number of repeat units is related to the resonant wavelength, the full-width at half maximum of the resonant wavelength, and the refractive index contrast in the photonic crystal.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Joanna AIZENBERG, Nicolas VOGEL, Ian BURGESS, Mathias KOLLE, Tanya SHIRMAN, Stefanie UTECH, Katherine Reece PHILLIPS, David A. WEITZ, Natalie KOAY
  • Publication number: 20210395821
    Abstract: Techniques Nuc-seq, Div-Seq, and Dronc-Seq are allow for unbiased analysis of any complex tissue. Nuc-Seq, a scalable single nucleus RNA-Seq method, can sensitively identify closely related cell types, including within the adult hippocampus. Div-seq combines Nuc-Seq with EdU-mediated labeling of proliferating cells, allowing tracking of transcriptional dynamics of newborn neurons in an adult neurogenic region in the hippocampus. Dronc-Seq uses a microfluidic device to co-encapsulate individual nuclei in reverse emulsion aqueous droplets in an oil medium together with one uniquely barcoded mRNA-capture bead.
    Type: Application
    Filed: November 13, 2018
    Publication date: December 23, 2021
    Inventors: Naomi Habib, Aviv Regev, Eugene Drokhlyansky, Anindita Basu, Inbal Avraham-Davidi, Orit Rozenblatt-Rosen, David A. Weitz
  • Publication number: 20210379555
    Abstract: The present invention generally relates to microfluidics and labeled nucleic acids. For example, certain aspects are generally directed to systems and methods for labeling nucleic acids within microfluidic droplets. In one set of embodiments, the nucleic acids may include “barcodes” or unique sequences that can be used to distinguish nucleic acids in a droplet from those in another droplet, for instance, even after the nucleic acids are pooled together. In some cases, the unique sequences may be incorporated into individual droplets using particles and attached to nucleic acids contained within the droplets (for example, released from lysed cells). In some cases, the barcodes may be used to distinguish tens, hundreds, or even thousands of nucleic acids, e.g., arising from different cells or other sources.
    Type: Application
    Filed: May 18, 2021
    Publication date: December 9, 2021
    Applicants: President and Fellows of Harvard College, Vilnius University
    Inventors: David A. Weitz, Allon Moshe Klein, Ilke Akartuna, Linas Mazutis, Marc W. Kirschner
  • Publication number: 20210355535
    Abstract: The present invention generally relates to microfluidics and/or epigenetic sequencing. In one set of embodiments, cells contained within a plurality of microfluidic droplets are lysed and the DNA (e.g., from nucleosomes) within the droplets are labeled, e.g., with adapters containing an identification sequence. The adapters may also contain other sequences, e.g., restriction sites, primer sites, etc., to assist with later analysis. After labeling with adapters, the DNA from the different cells may be combined and analyzed, e.g., to determine epigenetic information about the cells. For example, the DNA may be separated on the basis of certain modifications (e.g., methylation), and the DNA from the separated nucleosomes may be sequenced using techniques such as chromatin immunoprecipitation (“CUP”). In some cases, the DNA sequences may also be aligned with genomes, e.g., to determine which portions of the genome were epigenetically modified, e.g., via methylation.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 18, 2021
    Applicants: President and Fellows of Harvard College, The General Hospital Corporation
    Inventors: David Weitz, Assaf Rotem, Oren Ram, Bradley E. Bernstein
  • Publication number: 20210348203
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: January 14, 2021
    Publication date: November 11, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George M. Church
  • Publication number: 20210340597
    Abstract: The present invention generally relates to droplet-based microfluidic devices, including systems, methods, and kits for amplifying or cloning within droplets. In some embodiments, the present invention is generally directed to systems, methods, or kits for amplifying a plurality of nucleic acids, e.g., without substantially selectively amplifying some nucleic acids over others. The nucleic acids may be contained within the droplets. In addition, in some embodiments, a plurality of microfluidic droplet containing a species of interest, such as a nucleic acid, may be mixed with microfluidic droplets free of the species, then pipetted or otherwise transferred such that, on average, a predetermined number of droplets containing species of interest is transferred.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 4, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, John Heyman, Huidan Zhang, Linas Mazutis
  • Patent number: 11155715
    Abstract: A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
    Type: Grant
    Filed: July 13, 2014
    Date of Patent: October 26, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Nicolas Vogel, Ian Burgess, Mathias Kolle, Tanya Shirman, Stefanie Utech, Katherine Phillips, David A. Weitz, Natalie Koay
  • Patent number: 11141730
    Abstract: The present invention generally relates to microfluidics, and, in particular, to systems and methods for coalescing or fusing droplets. In certain aspects, two or more droplets within a microfluidic channel are brought together and caused to coalesce without using electric fields or charges. For example, in certain embodiments, droplets stabilized with a surfactant may be disrupted, e.g., by exposing the droplets to a solvent able to alter the surfactant, which may partially destabilize the droplets and allow them to coalesce. In some instances, the droplets may also be physically disrupted to facilitate coalesce. In addition, in some cases, the positions of one or more droplets may be controlled within a channel using a groove in a wall of the channel. For example, a droplet may at least partially enter the groove such that the position of the droplet is at least partially controlled by the groove.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: October 12, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Thomas E. Kodger, Donald Aubrecht, Ilke Akartuna
  • Patent number: 11141731
    Abstract: This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: October 12, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Manuel Marquez-Sanchez, Zhengdong Cheng
  • Patent number: 11123297
    Abstract: The present invention generally relates to microfluidic droplets and, in particular, to multiple emulsion microfluidic droplets. In certain aspects, particles such as gel particles can be prepared in an aqueous carrier from aqueous droplets (or a non-aqueous carrier from non-aqueous droplets). For example, in some embodiments, double-emulsion droplets of a first fluid, surrounded by a second fluid, contained in a carrier fluid may be prepared, where the first fluid forms a gel and the second fluid is removed. For instance, the second fluid may be dissolved in the carrier fluid, or the second fluid may be hardened, then removed, for example, due to a change in pH. Other embodiments of the present invention are generally directed to kits containing such microfluidic droplets, microfluidic devices for making such microfluidic droplets, or the like.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 21, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Alireza Abbaspourrad, Jing Fan, Weixia Zhang
  • Publication number: 20210268454
    Abstract: The present invention generally relates to emulsions, and more particularly, to multiple emulsions. In one aspect, multiple emulsions are formed by urging a fluid into a channel, e.g., by causing the fluid to enter the channel as a “jet.” Side channels can be used to encapsulate the fluid with a surrounding fluid. In some cases, multiple fluids may flow through a channel collinearly before multiple emulsion droplets are formed. The fluidic channels may also, in certain embodiments, include varying degrees of hydrophilicity or hydrophobicity. As examples, the fluidic channel may be relatively hydrophilic upstream of an intersection (or other region within the channel) and relatively hydrophobic downstream of the intersection, or vice versa. In some cases, the average cross-sectional dimension may change, e.g., at an intersection. For instance, the average cross-sectional dimension may increase at the intersection.
    Type: Application
    Filed: November 18, 2020
    Publication date: September 2, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Julian W.P. Thiele, Adam R. Abate
  • Publication number: 20210254129
    Abstract: The present invention generally relates to microfluidics and, in particular, to systems and methods for determining cells using amplification. In one set of embodiments, cells are encapsulated within droplets and nucleic acids from the cells amplified within the droplets. The droplets may then be pooled together and the amplified nucleic acids can be determined using PCR or other suitable techniques. In some embodiments, techniques such as these can be used to detect relatively rare cells that may be present, e.g., if the droplets are amplified using conditions able to selectively amplify nucleic acids arising from the relatively rare cells.
    Type: Application
    Filed: November 20, 2020
    Publication date: August 19, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Huidan Zhang
  • Publication number: 20210229099
    Abstract: The present invention is generally related to systems and methods for producing droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, at least one droplet is used to create a plurality of droplets, using techniques such as flow-focusing techniques. In one set of embodiments, a plurality of droplets, containing varying species, can be divided to form a collection of droplets containing the various species therein. A collection of droplets, according to certain embodiments, may contain various subpopulations of droplets that all contain the same species therein. Such a collection of droplets may be used as a library in some cases, or may be used for other purposes.
    Type: Application
    Filed: January 13, 2021
    Publication date: July 29, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate
  • Patent number: 11052368
    Abstract: The present invention generally relates to microfluidics and labeled nucleic acids. For example, certain aspects are generally directed to systems and methods for labeling nucleic acids within microfluidic droplets. In one set of embodiments, the nucleic acids may include “barcodes” or unique sequences that can be used to distinguish nucleic acids in a droplet from those in another droplet, for instance, even after the nucleic acids are pooled together. In some cases, the unique sequences may be incorporated into individual droplets using particles and attached to nucleic acids contained within the droplets (for example, released from lysed cells). In some cases, the barcodes may be used to distinguish tens, hundreds, or even thousands of nucleic acids, e.g., arising from different cells or other sources.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: July 6, 2021
    Assignees: Vilnius University, President and Fellows of Harvard College
    Inventors: David A. Weitz, Allon Moshe Klein, Ilke Akartuna, Linas Mazutis, Marc W. Kirschner
  • Publication number: 20210197146
    Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 1, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
  • Patent number: 11047003
    Abstract: The present invention generally relates to microfluidics and/or epigenetic sequencing. In one set of embodiments, cells contained within a plurality of microfluidic droplets are lysed and the DNA (e.g., from nucleosomes) within the droplets are labeled, e.g., with adapters containing an identification sequence. The adapters may also contain other sequences, e.g., restriction sites, primer sites, etc., to assist with later analysis. After labeling with adapters, the DNA from the different cells may be combined and analyzed, e.g., to determine epigenetic information about the cells. For example, the DNA may be separated on the basis of certain modifications (e.g., methylation), and the DNA from the separated nucleosomes may be sequenced using techniques such as chromatin immunoprecipitation (“ChIP”). In some cases, the DNA sequences may also be aligned with genomes, e.g., to determine which portions of the genome were epigenetically modified, e.g., via methylation.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: June 29, 2021
    Assignees: The General Hospital Corporation, President and Fellows of Harvard College
    Inventors: Assaf Rotem, Oren Ram, Bradley E. Bernstein, David A. Weitz