Patents by Inventor David A. Weitz

David A. Weitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180257076
    Abstract: The present invention generally relates to the manipulation of species using acoustic waves such as surface acoustic waves. In some aspects, a channel such as a microfluidic channel may be provided having two or more outlets, and acoustic waves applied to species within the channel to determine which outlet the species is directed to. For instance, surface acoustic waves may be applied to a species such as a cell or a particle to deflect it from the channel into a groove or other portion that directs it to a different outlet. In some cases, surprisingly, this deflection of species may be in a different direction than the incident acoustic waves on the channel. Other embodiments of the present invention are generally directed to kits including such systems, techniques for producing such systems, or the like.
    Type: Application
    Filed: August 25, 2016
    Publication date: September 13, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Warren Lloyd Ung, Thomas Franke
  • Publication number: 20180221491
    Abstract: The present invention relates generally to vesicles such as liposomes, colloidosomes, and polymersomes, as well as techniques for making and using such vesicles. In some cases, the vesicles may be at least partially biocompatible and/or biodegradable. The vesicles may be formed, according to one aspect, by forming a multiple emulsion comprising a first droplet surrounded by a second droplet, which in turn is surrounded by a third fluid, where the second droplet comprises lipids and/or polymers, and removing fluid from the second droplet, e.g., through evaporation or diffusion, until a vesicle is formed. In certain aspects, the size of the vesicle may be controlled, e.g., through osmolarity, and in certain embodiments, the vesicle may be ruptured through a change in osmolarity. In some cases, the vesicle may contain other species, such as fluorescent molecules, microparticles, pharmaceutical agents, etc., which may be released upon rupture.
    Type: Application
    Filed: October 16, 2017
    Publication date: August 9, 2018
    Inventors: David A. Weitz, Ho Cheung Shum, Daeyeon Lee, Insun Yoon, Jin-Woong Kim
  • Publication number: 20180214385
    Abstract: The invention relates to microparticles comprising a crosslinked gel and methods for making and using same.
    Type: Application
    Filed: March 8, 2018
    Publication date: August 2, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David J. Mooney, David A. Weitz, Stefanie Utech, Radivoje Prodanovich, Esther Amstad, Raluca Ostafe, Angelo S. Mao, Connie Chang Wilking, Wang Huanan
  • Patent number: 10029256
    Abstract: Articles and methods for controlling flow in fluidic systems, especially in microfluidic systems, are provided. In one aspect, a microfluidic system described herein includes a configuration such that the actuation of a single valve can allow the switching of fluids from a first fluid path (e.g., a first channel section) to a second fluid path (e.g., a second channel section). This may be achieved, for example, by incorporating a valve with a first channel section, which may have a lower hydrodynamic resistance than a second channel section prior to actuation of the valve. Actuation of the valve can cause only the hydrodynamic resistance of the first channel section to increase, thereby redirecting fluid flow into the second channel section (which now has a relatively lower hydrodynamic resistance).
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 24, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Adam R. Abate, David A. Weitz
  • Publication number: 20180171373
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 21, 2018
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Publication number: 20180155778
    Abstract: The present invention generally relates to microfluidics and/or epigenetic sequencing. In one set of embodiments, cells contained within a plurality of microfluidic droplets are lysed and the DNA (e.g., from nucleosomes) within the droplets are labeled, e.g., with adapters containing an identification sequence. The adapters may also contain other sequences, e.g., restriction sites, primer sites, etc., to assist with later analysis. After labeling with adapters, the DNA from the different cells may be combined and analyzed, e.g., to determine epigenetic information about the cells. For example, the DNA may be separated on the basis of certain modifications (e.g., methylation), and the DNA from the separated nucleosomes may be sequenced using techniques such as chromatin immunoprecipitation (“ChIP”). In some cases, the DNA sequences may also be aligned with genomes, e.g., to determine which portions of the genome were epigenetically modified, e.g., via methylation.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 7, 2018
    Inventors: David A. Weitz, Assaf Rotem, Oren Ram, Bradley E. Bernstein
  • Publication number: 20180155777
    Abstract: The present invention generally relates to microfluidics and/or epigenetic sequencing. In one set of embodiments, cells contained within a plurality of microfluidic droplets are lysed and the DNA (e.g., from nucleosomes) within the droplets are labeled, e.g., with adapters containing an identification sequence. The adapters may also contain other sequences, e.g., restriction sites, primer sites, etc., to assist with later analysis. After labeling with adapters, the DNA from the different cells may be combined and analyzed, e.g., to determine epigenetic information about the cells. For example, the DNA may be separated on the basis of certain modifications (e.g., methylation), and the DNA from the separated nucleosomes may be sequenced using techniques such as chromatin immunoprecipitation (“ChIP”). In some cases, the DNA sequences may also be aligned with genomes, e.g., to determine which portions of the genome were epigenetically modified, e.g., via methylation.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 7, 2018
    Inventors: David A. Weitz, Assaf Rotem, Oren Ram, Bradley E. Bernstein
  • Publication number: 20180117585
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Application
    Filed: December 1, 2017
    Publication date: May 3, 2018
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Publication number: 20180119212
    Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.
    Type: Application
    Filed: October 24, 2017
    Publication date: May 3, 2018
    Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
  • Publication number: 20180098936
    Abstract: Embodiments of various aspects described herein relate to methods and compositions for injecting and/or delivering high viscosity and/or high concentration active agent solutions. In some embodiments, the methods and compositions described herein can be used for subcutaneous administration.
    Type: Application
    Filed: March 23, 2016
    Publication date: April 12, 2018
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. INGBER, David A. WEITZ, Jonathan DIDIER, Maximilian ZIERINGER
  • Publication number: 20180087078
    Abstract: The present invention generally relates to microfluidics and labeled nucleic acids. In one aspect, the present invention is generally directed to a method, wherein the method includes providing a plurality of droplets comprising particles, the particles comprising oligonucleotides, and attaching a nucleic acid sequence to the oligonucleotides. Certain embodiments are generally directed to systems and methods for splitting a droplet into two or more droplets. Certain embodiments are generally directed to systems and methods for sorting fluidic droplets in a liquid.
    Type: Application
    Filed: April 15, 2016
    Publication date: March 29, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Huidan Zhang, Hohn Heyman, Allon Moshe Klein
  • Patent number: 9925501
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 27, 2018
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
  • Patent number: 9919277
    Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 20, 2018
    Assignees: Medical Research Council, President and Fellows of Harvard College
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Publication number: 20180071705
    Abstract: The present invention generally relates to microfluidics and labeled nucleic acids. For example, certain aspects are generally directed to systems and methods for labeling nucleic acids within microfluidic droplets. In one set of embodiments, the nucleic acids may include “barcodes” or unique sequences that can be used to distinguish nucleic acids in a droplet from those in another droplet, for instance, even after the nucleic acids are pooled together. In some cases, the unique sequences may be incorporated into individual droplets using particles and attached to nucleic acids contained within the droplets (for example, released from lysed cells). In some cases, the barcodes may be used to distinguish tens, hundreds, or even thousands of nucleic acids, e.g., arising from different cells or other sources.
    Type: Application
    Filed: October 3, 2017
    Publication date: March 15, 2018
    Inventors: David A. Weitz, Allon Moshe Klein, Ilke Akartuna, Linas Mazutis, Marc W. Kirschner
  • Publication number: 20180071695
    Abstract: The present invention generally relates to emulsions, and more particularly, to multiple emulsions. In one aspect, multiple emulsions are formed by urging a fluid into a channel, e.g., by causing the fluid to enter the channel as a “jet.” Side channels can be used to encapsulate the fluid with a surrounding fluid. In some cases, multiple fluids may flow through a channel collinearly before multiple emulsion droplets are formed. The fluidic channels may also, in certain embodiments, include varying degrees of hydrophilicity or hydrophobicity. As examples, the fluidic channel may be relatively hydrophilic upstream of an intersection (or other region within the channel) and relatively hydrophobic downstream of the intersection, or vice versa. In some cases, the average cross-sectional dimension may change, e.g., at an intersection. For instance, the average cross-sectional dimension may increase at the intersection.
    Type: Application
    Filed: July 21, 2017
    Publication date: March 15, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David A. Weitz, Julian W.P. Thiele, Adam R. Abate
  • Publication number: 20180066305
    Abstract: The present invention generally relates to microfluidics and, in particular, to systems and methods for determining cells using amplification. In one set of embodiments, cells are encapsulated within droplets and nucleic acids from the cells amplified within the droplets. The droplets may then be pooled together and the amplified nucleic acids can be determined using PCR or other suitable techniques. In some embodiments, techniques such as these can be used to detect relatively rare cells that may be present, e.g., if the droplets are amplified using conditions able to selectively amplify nucleic acids arising from the relatively rare cells.
    Type: Application
    Filed: March 11, 2016
    Publication date: March 8, 2018
    Applicant: President and Fellows of Havard College
    Inventors: David A. Weitz, Huidan Zhang
  • Publication number: 20180056293
    Abstract: The present invention is generally related to systems and methods for producing droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, at least one droplet is used to create a plurality of droplets, using techniques such as flow-focusing techniques. In one set of embodiments, a plurality of droplets, containing varying species, can be divided to form a collection of droplets containing the various species therein. A collection of droplets, according to certain embodiments, may contain various subpopulations of droplets that all contain the same species therein. Such a collection of droplets may be used as a library in some cases, or may be used for other purposes.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: David A. Weitz, Adam R. Abate
  • Publication number: 20180057875
    Abstract: The present invention relates to systems and methods for sequencing nucleic acids, including sequencing nucleic acids in fluidic droplets. In one set of embodiments, the method employs sequencing by hybridization using droplets such as microfluidic droplets. In some embodiments, droplets are formed which include a target nucleic acid, a nucleic acid probe, and at least one identification element, such as a fluorescent particle. The nucleic acid probes that hybridize to the target nucleic acid are determined, in some instances, by determining the at least one identification element. The nucleic acid probes that hybridize to the target nucleic acid may be used to determine the sequence of the target nucleic acid. In certain instances, the microfluidic droplets are provided with reagents that modify the nucleic acid probe. In some cases, a droplet, such as those described above, is deformed such that the components of the droplets individually pass a target area.
    Type: Application
    Filed: August 7, 2017
    Publication date: March 1, 2018
    Inventors: David A. Weitz, Jeremy Agresti, Michael P. Weiner, Adam R. Abate, Tony Hung
  • Publication number: 20180030515
    Abstract: The present invention generally relates to a combination of molecular barcoding and emulsion-based microfluidics to isolate, lyse, barcode, and prepare nucleic acids from individual cells in a high-throughput manner.
    Type: Application
    Filed: March 8, 2017
    Publication date: February 1, 2018
    Inventors: Aviv Regev, Evan Zane MACOSKO, Steven Andrew MCCARROLL, Alexander K. SHALEK, Anindita BASU, Christopher B. FORD, Hongkun PARK, David A. WEITZ
  • Patent number: 9878325
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 30, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn