Patents by Inventor David A. Weitz
David A. Weitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9878299Abstract: The present invention generally relates to microparticles and, in particular, to systems and methods for encapsulation within microparticles. In one aspect, the present invention is generally directed to microparticles containing entities therein, where the entities contain an agent that can be released from the microparticles, e.g., via diffusion. In some cases, the agent may be released from the microparticles without disruption of the microparticles. The entities may be, for instance, polymeric particles, hydrogel particles, droplets of fluid, etc. The entities may be contained within a fluid that is, in turn, encapsulated within the microparticle. The agent may be released from the entity into the fluid, and then from the fluid through the microparticle. In such fashion, the release of agent from the microparticle may be controlled, e.g., over relatively long time scales.Type: GrantFiled: November 19, 2015Date of Patent: January 30, 2018Assignees: The Procter & Gamble Company, President and Fellows of Harvard CollegeInventors: John Christopher Wesner, Marco Caggioni, Taotao Zhu, David A Weitz, Alireza Abbaspourrad, Chang-Hyung Choi
-
Publication number: 20180023109Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.Type: ApplicationFiled: August 7, 2017Publication date: January 25, 2018Inventors: David A. Weitz, Jeremy Agresti, Liang-Yin Chu, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
-
Publication number: 20180021780Abstract: A system and method are provided for harvesting target biological substances. The system includes a substrate and a first and second channel formed in the substrate. The channels longitudinally extending substantially parallel to each other. A series of gaps extend from the first channel to the second channel to create a fluid communication path passing between a series of columns with the columns being longitudinally separated by a predetermined separation distance. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate. The sources are configured to create a differential between the first and second channel flow rates to generate physiological shear rates along the second channel that are bounded within a predetermined range.Type: ApplicationFiled: September 20, 2017Publication date: January 25, 2018Inventors: Joseph Italiano, Linas Mazutis, Jonathan N. Thon, David A. Weitz
-
Publication number: 20180023133Abstract: The present invention generally relates to microfluidics and/or epigenetic sequencing. In one set of embodiments, cells contained within a plurality of microfluidic droplets are lysed and the DNA (e.g., from nucleosomes) within the droplets are labeled, e.g., with adapters containing an identification sequence. The adapters may also contain other sequences, e.g., restriction sites, primer sites, etc., to assist with later analysis. After labeling with adapters, the DNA from the different cells may be combined and analyzed, e.g., to determine epigenetic information about the cells. For example, the DNA may be separated on the basis of certain modifications (e.g., methylation), and the DNA from the separated nucleosomes may be sequenced using techniques such as chromatin immunoprecipitation (“ChIP”). In some cases, the DNA sequences may also be aligned with genomes, e.g., to determine which portions of the genome were epigenetically modified, e.g., via methylation.Type: ApplicationFiled: August 7, 2017Publication date: January 25, 2018Inventors: Assaf Rotem, Oren Ram, Bradley E. Bernstein, David A. Weitz
-
Publication number: 20180016622Abstract: The present invention generally relates to droplet-based microfluidic devices, including systems, methods, and kits for amplifying or cloning within droplets. In some embodiments, the present invention is generally directed to systems, methods, or kits for amplifying a plurality of nucleic acids, e.g., without substantially selectively amplifying some nucleic acids over others. The nucleic acids may be contained within the droplets. In addition, in some embodiments, a plurality of microfluidic droplet containing a species of interest, such as a nucleic acid, may be mixed with microfluidic droplets free of the species, then pipetted or otherwise transferred such that, on average, a predetermined number of droplets containing species of interest is transferred.Type: ApplicationFiled: January 22, 2016Publication date: January 18, 2018Applicant: President and Fellows of Harvard CollegeInventors: David A. Weitz, John Heyman, Huidan Zhang, Linas Mazutis
-
Patent number: 9850526Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.Type: GrantFiled: May 26, 2015Date of Patent: December 26, 2017Assignee: President and Fellows of Harvard CollegeInventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
-
Publication number: 20170361318Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.Type: ApplicationFiled: September 5, 2017Publication date: December 21, 2017Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
-
Publication number: 20170354937Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.Type: ApplicationFiled: July 25, 2017Publication date: December 14, 2017Applicant: President and Fellows of Harvard CollegeInventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
-
Patent number: 9839911Abstract: The present invention is generally related to systems and methods for producing droplets. The droplets may contain varying species, e.g., for use as a library. In some cases, at least one droplet is used to create a plurality of droplets, using techniques such as flow-focusing techniques. In one set of embodiments, a plurality of droplets, containing varying species, can be divided to form a collection of droplets containing the various species therein. A collection of droplets, according to certain embodiments, may contain various subpopulations of droplets that all contain the same species therein. Such a collection of droplets may be used as a library in some cases, or may be used for other purposes.Type: GrantFiled: May 8, 2015Date of Patent: December 12, 2017Assignee: President and Fellows of Harvard CollegeInventors: David A. Weitz, Adam R. Abate
-
Patent number: 9816121Abstract: The present invention generally relates to droplets and/or emulsions, such as multiple emulsions. In some cases, the droplets and/or emulsions may be used in assays, and in certain embodiments, the droplet or emulsion may be hardened to form a gel. In some aspects, a heterogeneous assay can be performed using a gel. For example, a droplet may be hardened to form a gel, where the droplet contains a cell, DNA, or other suitable species. The gel may be exposed to a reactant, and the reactant may interact with the gel and/or with the cell, DNA, etc., in some fashion. For example, the reactant may diffuse through the gel, or the hardened particle may liquefy to form a liquid state, allowing the reactant to interact with the cell. As a specific example, DNA contained within a gel particle may be subjected to PCR (polymerase chain reaction) amplification, e.g., by using PCR primers able to bind to the gel as it forms. As the DNA is amplified using PCR, some of the DNA will be bound to the gel via the PCR primer.Type: GrantFiled: March 3, 2017Date of Patent: November 14, 2017Assignee: President and Fellows of Harvard CollegeInventors: Jeremy Agresti, Liang-Yin Chu, David A. Weitz, Jin-Woong Kim, Amy Rowat, Morten Sommer, Gautam Dantas, George Church
-
Publication number: 20170319443Abstract: The present invention generally relates to microfluidic droplets and, in particular, to multiple emulsion microfluidic droplets. In one set of embodiments, multiple emulsion droplets are provided, where an inner shell of the droplet is relatively thin, compared to the outer shell (or other shells) of the droplet. For instance, in one set of embodiments, the inner droplet has an average thickness of less than about 1000 nm. In some cases, the inner shell may be rigidified, e.g., to form a gel or a polymeric layer. This may be useful, for example, for preventing coalescence of fluids within the microfluidic droplet. Other embodiments of the present invention are generally directed to methods of making such droplets, methods of using such droplets, microfluidic devices for making such droplets, and the like.Type: ApplicationFiled: November 19, 2015Publication date: November 9, 2017Applicants: President and Fellows of Harvard College, The Procter & Gamble CompanyInventors: David A. Weitz, Alireza Abbaspourrad, Chang-Hyung Choi, Hyomin Lee, Marco Caggioni, John Christopher, Taotao Zhu
-
Publication number: 20170321177Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one set of embodiments, droplets may be sorted using surface acoustic waves. The droplets may contain cells or other species. In some cases, the surface acoustic waves may be created using a surface acoustic wave generator such as an interdigitated transducer, and/or a material such as a piezoelectric substrate. The piezoelectric substrate may be isolated from the microfluidic substrate except at or proximate the location where the droplets are sorted, e.g., into first or second microfluidic channels. At such locations, the microfluidic substrate may be coupled to the piezoelectric substrate (or other material) by one or more coupling regions. In some cases, relatively high sorting rates may be achieved, e.g., at rates of at least about 1,000 Hz, at least about 10,000 Hz, or at least about 100,000 Hz, and in some embodiments, with high cell viability after sorting.Type: ApplicationFiled: May 24, 2017Publication date: November 9, 2017Inventors: David A. Weitz, Thomas Franke, Achim Wixforth, Lothar Schmid, Jeremy Agresti, Adam R. Abate
-
Patent number: 9795965Abstract: A system and method are provided for harvesting target biological substances. The system includes a substrate and a first and second channel formed in the substrate. The channels longitudinally extending substantially parallel to each other. A series of gaps extend from the first channel to the second channel to create a fluid communication path passing between a series of columns with the columns being longitudinally separated by a predetermined separation distance. The system also includes a first source configured to selectively introduce into the first channel a first biological composition at a first channel flow rate and a second source configured to selectively introduce into the second channel a second biological composition at a second channel flow rate. The sources are configured to create a differential between the first and second channel flow rates to generate physiological shear rates along the second channel that are bounded within a predetermined range.Type: GrantFiled: November 20, 2013Date of Patent: October 24, 2017Assignee: Brigham and Women's Hospital, Inc.Inventors: Joseph Italiano, Linas Mazutis, Jonathan N. Thon, David A. Weitz
-
Patent number: 9797010Abstract: The present invention relates to systems and methods for sequencing nucleic acids, including sequencing nucleic acids in fluidic droplets. In one set of embodiments, the method employs sequencing by hybridization using droplets such as microfluidic droplets. In some embodiments, droplets are formed which include a target nucleic acid, a nucleic acid probe, and at least one identification element, such as a fluorescent particle. The nucleic acid probes that hybridize to the target nucleic acid are determined, in some instances, by determining the at least one identification element. The nucleic acid probes that hybridize to the target nucleic acid may be used to determine the sequence of the target nucleic acid. In certain instances, the microfluidic droplets are provided with reagents that modify the nucleic acid probe. In some cases, a droplet, such as those described above, is deformed such that the components of the droplets individually pass a target area.Type: GrantFiled: December 19, 2008Date of Patent: October 24, 2017Assignee: President and Fellows of Harvard CollegeInventors: David A. Weitz, Jeremy Agresti, Michael P. Weiner, Adam R. Abate, Tony Hung
-
Publication number: 20170296996Abstract: The present invention generally relates to microparticles and, in particular, to systems and methods for encapsulation within microparticles. In one aspect, the present invention is generally directed to microparticles containing entities therein, where the entities contain an agent that can be released from the microparticles, e.g., via diffusion. In some cases, the agent may be released from the microparticles without disruption of the microparticles. The entities may be, for instance, polymeric particles, hydrogel particles, droplets of fluid, etc. The entities may be contained within a fluid that is, in turn, encapsulated within the microparticle. The agent may be released from the entity into the fluid, and then from the fluid through the microparticle. In such fashion, the release of agent from the microparticle may be controlled, e.g., over relatively long time scales.Type: ApplicationFiled: June 28, 2017Publication date: October 19, 2017Inventors: John Christopher Wesner, Marco Caggioni, Taotao Zhu, David A. Weitz, Alireza Abbaspourrad, Chang-Hyung Choi
-
Patent number: 9789482Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets, according to another aspect of the invention, for example, through charge and/or dipole interactions. Another aspect of the invention provides the ability to determine droplets, or a component thereof, for example, using fluorescence and/or other optical techniques (e.g., microscopy), or electric sensing techniques such as dielectric sensing.Type: GrantFiled: April 17, 2014Date of Patent: October 17, 2017Assignee: President and Fellows of Harvard CollegeInventors: Darren Roy Link, David A. Weitz, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
-
Publication number: 20170282133Abstract: The invention describes a method for isolating one or more genetic elements encoding a gene product having a desired activity, comprising the steps of: (a) compartmentalising genetic elements into microcapsules; and (b) sorting the genetic elements which express the gene product having the desired activity; wherein at least one step is under microfluidic control. The invention enables the in vitro evolution of nucleic acids and proteins by repeated mutagenesis and iterative applications of the method of the invention.Type: ApplicationFiled: May 5, 2017Publication date: October 5, 2017Inventors: Andrew David Griffiths, David A. Weitz, Darren R. Link, Keunho Ahn, Jerome Bibette
-
Patent number: 9757698Abstract: The present invention generally relates to systems and methods for the control of fluids and, in some cases, to systems and methods for flowing a fluid into and/or out of other fluids. As examples, fluid may be injected into a droplet contained within a fluidic channel, or a fluid may be injected into a fluidic channel to create a droplet. In some embodiments, electrodes may be used to apply an electric field to one or more fluidic channels, e.g., proximate an intersection of at least two fluidic channels. For instance, a first fluid may be urged into and/or out of a second fluid, facilitated by the electric field. The electric field, in some cases, may disrupt an interface between a first fluid and at least one other fluid. Properties such as the volume, flow rate, etc.Type: GrantFiled: June 25, 2010Date of Patent: September 12, 2017Assignee: President and Fellows of Harvard CollegeInventors: David A. Weitz, Adam R. Abate, Tony Hung, Pascaline Mary
-
Publication number: 20170246634Abstract: The present invention generally relates to the manipulation of fluids using acoustic waves such as surface acoustic waves. In some aspects, one fluid may be introduced into another fluid via application of suitable acoustic waves. For example, a fluid may be added or injected into another fluid by applying acoustic waves where, in the absence of the acoustic waves, the fluid cannot be added or injected, e.g., due to the interface or surface tension between the fluids. Thus, for example, a fluid may be injected into a droplet of another fluid. Other embodiments of the invention are generally directed to systems and methods for making or using such systems, kits involving such systems, or the like.Type: ApplicationFiled: June 25, 2015Publication date: August 31, 2017Applicants: President and Fellows of Harvard College, The University Court of the University of GlasgowInventors: David A. Weitz, Thomas Franke
-
Publication number: 20170224849Abstract: Certain aspects of the present invention relates to microcapsules comprising a core; and a hydrophobic, cross-linked polymeric shell, as well as method for making and using same. Some embodiments of the present invention relate to microcapsules comprising a core; and a hydrophobic, cross-linked polymeric shell. These microcapsules can be used in a variety of applications, including agriculture, encapsulation of food ingredients, health care, cosmetics (e.g., perfumes, detergents, and sunscreen), coatings (e.g., paints and pigments), additives, catalysis, and oil recovery.Type: ApplicationFiled: October 13, 2015Publication date: August 10, 2017Inventors: Nichlaus James Carroll, Maximilian Zieringer, David A. Weitz, Joseph D. Brain, Nagarjun Konduru Vendata, Ramon Molina, Rajiv Gupta