Patents by Inventor David Alan Lilienfeld

David Alan Lilienfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10586846
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: March 10, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10541338
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to SiC super-junction (SJ) power devices. A SiC-SJ device includes a plurality of SiC semiconductor layers of a first conductivity-type, wherein a first and a second SiC semiconductor layer of the plurality of SiC semiconductor layers comprise a termination region disposed adjacent to an active region with an interface formed therebetween, an act wherein the termination region of the first and the second SiC semiconductor layers comprises a plurality of implanted regions of a second conductivity-type, and wherein an effective doping profile of the termination region of the first SiC semiconductor layer is different from an effective doping profile of the termination region of the second SiC semiconductor layer.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 21, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, James Jay McMahon
  • Publication number: 20190363183
    Abstract: According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
    Type: Application
    Filed: June 6, 2019
    Publication date: November 28, 2019
    Inventors: Stephen Daley Arthur, Joseph Darryl Michael, Tammy Lynn Johnson, David Alan Lilienfeld, Kevin Sean Matocha, Jody Alan Fronheiser, William Gregg Hawkins
  • Publication number: 20190245035
    Abstract: An integrated circuit includes a silicon carbide (SiC) epitaxial layer disposed on a SiC layer, wherein the SiC epitaxial layer has a first conductivity-type and the SiC layer has a second conductivity-type that is opposite to the first conductivity-type. The integrated circuit also includes a junction isolation feature disposed in the SiC epitaxial layer and having the second conductivity-type. The junction isolation feature extends vertically through a thickness of the SiC epitaxial layer and contacts the SiC layer, and wherein the junction isolation feature has a depth of at least about 2 micrometers (?m).
    Type: Application
    Filed: February 6, 2018
    Publication date: August 8, 2019
    Inventors: Reza Ghandi, David Alan Lilienfeld, Alexander Viktorovich Bolotnikov, Peter Almern Losee
  • Patent number: 10367089
    Abstract: According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 30, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Joseph Darryl Michael, Tammy Lynn Johnson, David Alan Lilienfeld, Kevin Sean Matocha, Jody Alan Fronheiser, William Gregg Hawkins
  • Publication number: 20190140048
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Application
    Filed: June 18, 2018
    Publication date: May 9, 2019
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Patent number: 10243039
    Abstract: A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: March 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, Reza Ghandi
  • Publication number: 20190088479
    Abstract: A method of manufacturing a semiconductor device including performing a first implantation in a semiconductor layer via ion implantation forming a first implantation region and performing a second implantation in the semiconductor layer via ion implantation forming a second implantation region. The first and second implantation overlap with one another and combine to form a connection region extending into the semiconductor layer by a predefined depth.
    Type: Application
    Filed: April 13, 2018
    Publication date: March 21, 2019
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, Reza Ghandi, David Alan Lilienfeld
  • Publication number: 20190006529
    Abstract: The subject matter disclosed herein relates to silicon carbide (SiC) power devices and, more specifically, to SiC super-junction (SJ) power devices. A SiC-SJ device includes a plurality of SiC semiconductor layers of a first conductivity-type, wherein a first and a second SiC semiconductor layer of the plurality of SiC semiconductor layers comprise a termination region disposed adjacent to an active region with an interface formed therebetween, an act wherein the termination region of the first and the second SiC semiconductor layers comprises a plurality of implanted regions of a second conductivity-type, and wherein an effective doping profile of the termination region of the first SiC semiconductor layer is different from an effective doping profile of the termination region of the second SiC semiconductor layer.
    Type: Application
    Filed: December 15, 2015
    Publication date: January 3, 2019
    Inventors: Alexander Viktorovich BOLOTNIKOV, Peter Almern LOSEE, David Alan LILIENFELD, James Jay MCMAHON
  • Publication number: 20180190791
    Abstract: The present disclosure relates to a symmetrical, punch-through transient voltage suppression (TVS) device includes a mesa structure disposed on a semiconductor substrate. The mesa structure includes a first semiconductor layer of a first conductivity-type, a second semiconductor layer of a second conductivity-type disposed on the first semiconductor layer, and a third semiconductor layer of the first conductive-type disposed on the second semiconductor layer. The mesa structure also includes beveled sidewalls forming mesa angles with respect to the semiconductor substrate and edge implants disposed at lateral edges of the second semiconductor layer. The edge implants including dopants of the second conductive-type are configured to cause punch-through to occur in a bulk region and not in the lateral edges of the second semiconductor layer.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 5, 2018
    Inventors: Victor Mario Torres, Reza Ghandi, David Alan Lilienfeld, Avinash Srikrishnan Kashyap, Alexander Viktorovich Bolotnikov
  • Patent number: 10014388
    Abstract: The present disclosure relates to a symmetrical, punch-through transient voltage suppression (TVS) device includes a mesa structure disposed on a semiconductor substrate. The mesa structure includes a first semiconductor layer of a first conductivity-type, a second semiconductor layer of a second conductivity-type disposed on the first semiconductor layer, and a third semiconductor layer of the first conductive-type disposed on the second semiconductor layer. The mesa structure also includes beveled sidewalls forming mesa angles with respect to the semiconductor substrate and edge implants disposed at lateral edges of the second semiconductor layer. The edge implants including dopants of the second conductive-type are configured to cause punch-through to occur in a bulk region and not in the lateral edges of the second semiconductor layer.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 3, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Victor Mario Torres, Reza Ghandi, David Alan Lilienfeld, Avinash Srikrishnan Kashyap, Alexander Viktorovich Bolotnikov
  • Patent number: 10002920
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 19, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20180166531
    Abstract: The subject matter disclosed herein relates to super-junction (SJ) power devices and, more specifically, to edge termination techniques for SJ power devices. A semiconductor super-junction (SJ) device includes one or more epitaxial (epi) layers having a termination region disposed adjacent to an active region. The termination region includes a plurality of vertical pillars of a first and a second conductivity-type, wherein, moving outward from the active region, a respective width of each successive vertical pillar is the same or smaller. The termination region also includes a plurality of compensated regions having a low doping concentration disposed directly between a first side of each vertical pillar of the first conductivity-type and a first side of each vertical pillar of the second conductivity-type, wherein, moving outward from the active region, a respective width of each successive compensated region is the same or greater.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Alexander Viktorovich Bolotnikov, Reza Ghandi, David Alan Lilienfeld, Peter Almern Losee
  • Publication number: 20170278924
    Abstract: A super junction (SJ) device may include one or more charge balance (CB) layers. Each CB layer may include an epitaxial (epi) layer having a first conductivity type and a plurality of charge balance (CB) regions having a second conductivity type. Additionally, the SJ device may include a connection region having the second conductivity type that extends from a region disposed in a top surface of a device layer of the SJ device to one or more of the CB regions. The connection region may enable carriers to flow directly from the region to the one or more CB regions, which may decrease switching losses of the SJ device.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 28, 2017
    Inventors: Alexander Viktorovich Bolotnikov, Peter Almern Losee, David Alan Lilienfeld, Reza Ghandi
  • Patent number: 9704949
    Abstract: A charge-balanced (CB) diode may include one or more CB layers. Each CB layer may include an epitaxial layer having a first conductivity type and a plurality of buried regions having a second conductivity type. Additionally, the CB diode may include an upper epitaxial layer having the first conductivity type that is disposed adjacent to an uppermost CB layer of the one or more CB layers. The upper epitaxial layer may also include a plurality of junction barrier (JBS) implanted regions having the second conductivity type. Further, the CB diode may include a Schottky contact disposed adjacent to the upper epitaxial layer and the plurality of JBS implanted regions.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 11, 2017
    Assignee: General Electric Company
    Inventors: Reza Ghandi, Peter Almern Losee, Alexander Viktorovich Bolotnikov, David Alan Lilienfeld
  • Patent number: 9257283
    Abstract: A semiconductor device is disclosed along with methods for manufacturing such a device. In certain embodiments, the semiconductor device includes a source electrode formed using a metal that limits a shift, such as due to bias temperature instability, in a threshold voltage of the semiconductor device during operation. In certain embodiments the semiconductor device may be based on silicon carbide.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: February 9, 2016
    Assignee: General Electric Company
    Inventors: Joseph Darryl Michael, Stephen Daley Arthur, Tammy Lynn Johnson, David Alan Lilienfeld
  • Publication number: 20140034963
    Abstract: A semiconductor device is disclosed along with methods for manufacturing such a device. In certain embodiments, the semiconductor device includes a source electrode formed using a metal that limits a shift, such as due to bias temperature instability, in a threshold voltage of the semiconductor device during operation. In certain embodiments the semiconductor device may be based on silicon carbide.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joseph Darryl Michael, Stephen Daley Arthur, Tammy Lynn Johnson, David Alan Lilienfeld
  • Publication number: 20130075756
    Abstract: According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
    Type: Application
    Filed: March 27, 2012
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Joseph Darryl Michael, Tammy Lynn Johnson, David Alan Lilienfeld, Kevin Sean Matocha, Jody Alan Fronheiser, William Gregg Hawkins