Patents by Inventor David B. Krizman

David B. Krizman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9417246
    Abstract: The current disclosure provides for specific peptides from the Insulin Receptor Substrate 1 (IRS1) protein and the derived ionization characteristics of those peptides that are advantageous for quantifying IRS1 directly in formalin fixed biological samples by the method of Selected Reaction Monitoring (SRM) mass spectrometry. Such fixed biological samples include: formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and formalin fixed and paraffin embedded tissue culture cells. IRS1 protein is quantitated in biological samples by the method of SRM/MRM mass spectrometry by quantitating one or more of the peptides described herein. The peptides can be quantitated if they reside in a modified or an unmodified form. Examples of potentially modified forms of IRS1 peptides include those bearing phosphorylation of a tyrosine, threonine, serine, and/or other amino acid residues within the peptide sequence.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 16, 2016
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: David B. Krizman, Todd Hembrough, Sheeno Thyparambil
  • Publication number: 20160216268
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Fatty acid synthase (FASN) protein are provided that are particularly advantageous for quantifying the FASN protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: April 11, 2016
    Publication date: July 28, 2016
    Inventors: David B. KRIZMAN, Todd HEMBROUGH, Sheeno THYPARAMBIL, Wei-Li LIAO
  • Patent number: 9360487
    Abstract: The current disclosure provides specific peptides, and derived ionization characteristics of the peptides from the estrogen receptor (ER), progesterone receptor (PR), and/or antigen Ki67 (Ki67) proteins that are particularly advantageous for quantifying the ER, PR, and/or Ki67 proteins directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring/Multiple Reaction Monitoring (SRM/MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: June 7, 2016
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: David B. Krizman, Todd Hembrough, Sheeno Thyparambil, Wei-Li Liao
  • Publication number: 20160131665
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Insulin Receptor protein (IR), and its isoforms IR-A and IR-B, that are particularly advantageous for quantifying the IR protein, IR-A isoform and/or IR-B isoform, directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 12, 2016
    Inventors: David B. Krizman, Wei-Li Liao, Sheeno Thyparambil, Todd Hembrough
  • Patent number: 9309554
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Fatty acid synthase (FASN) protein are provided that are particularly advantageous for quantifying the FASN protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 12, 2016
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: David B. Krizman, Todd Hembrough, Sheeno Thyparambil, Wei-Li Liao
  • Publication number: 20160054323
    Abstract: The current disclosure provides for specific peptides, and derived ionization characteristics of the peptides, from the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins that are particularly advantageous for quantifying the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein said biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: November 9, 2015
    Publication date: February 25, 2016
    Inventors: David B. KRIZMAN, Wei-Li Liao, Sheeno Thyparambil, Todd Hembrough
  • Patent number: 9261506
    Abstract: The current disclosure provides for specific peptides, and derived ionization characteristics of the peptides, from the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins that are particularly advantageous for quantifying the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein said biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: February 16, 2016
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: David B. Krizman, Wei-Li Liao, Sheeno Thyparambil, Todd Hembrough
  • Patent number: 9255934
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Insulin Receptor protein (IR), and its isoforms IR-A and IR-B, that are particularly advantageous for quantifying the IR protein, IR-A isoform and/or IR-B isoform, directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: February 9, 2016
    Assignee: Expression Pathology, Inc.
    Inventors: David B. Krizman, Wei-Li Liao, Sheeno Thyparambil, Todd Hembrough
  • Publication number: 20160018304
    Abstract: The current invention provides a method for directly converting histopathologically processed biological samples, tissues, and cells into a multiuse biomolecule lysate. This method allows for simultaneous extraction, isolation, solubilization, and storage of all biomolecules contained within the histopathologically processed biological sample, thereby forming a representative library of said sample. This multi-use biomolecule lysate is dilutable, soluble, capable of being fractionated, and used in any number of subsequent experiments.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: Marlene M. DARFLER, David B. KRIZMAN
  • Publication number: 20150376678
    Abstract: The current disclosure provides for specific peptides, and derived ionization characteristics of the peptides, from the ALK, Ros, Ron, Ret, TS, and/or FGFR1 proteins that are particularly advantageous for quantifying the ALK, Ros, Ron, Ret, TS, and/or FGFR1 proteins directly in biological samples that have been fixed in formalin by the methods of Selected Reaction Monitoring (SRM) mass spectrometry, or as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: September 15, 2015
    Publication date: December 31, 2015
    Inventors: David B. KRIZMAN, Todd Hembrough, Sheeno Thyparambil, Wei-Li Lao
  • Patent number: 9163275
    Abstract: The current invention provides a method for directly converting histopathologically processed biological samples, tissues, and cells into a multi-use biomolecule lysate. This method allows for simultaneous extraction, isolation, solublization, and storage of all biomolecules contained within the histopathologically processed biological sample, thereby forming a representative library of said sample. This multi-use biomolecule lysate is dilutable, soluble, capable of being fractionated, and used in any number of subsequent experiments.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 20, 2015
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: Marlene M. Darfler, David B. Krizman
  • Patent number: 9139864
    Abstract: Objective quantitation of the c-Src protein directly in cancer patient tissue can aid in determining the aggressiveness of an individual patient's tumor as well as help make more informed decisions about choice of therapy. However, the c-Src protein is currently analyzed directly in formalin fixed patient tissue only by immunohistochemistry methodology which is at best subjectively semi-quantitative. This invention describes an objective quantitative assay for the c-Src protein using mass spectrometry as the analytical methodology. Specific peptides, experimentally discovered characteristics about the peptides, and experimentally established assay conditions based on those peptide characteristics are provided for use in a mass spectrometry-based Selected Reaction Monitoring (SRM) assay in order to measure relative or absolute quantitative levels of c-Src directly in a protein preparation obtained from a formalin fixed cancer patient tissue sample.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: September 22, 2015
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventor: David B. Krizman
  • Publication number: 20150072895
    Abstract: The current disclosure provides for specific peptides, and derived ionization characteristics of the peptides, from the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins that are particularly advantageous for quantifying the KRT5, KRT7, NapsinA, TTF1, TP63, and/or MUC1 proteins directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein said biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: David B. KRIZMAN, Wei-Li LIAO, Sheeno THYPARAMBIL, Todd HEMBROUGH
  • Publication number: 20140336281
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Ephrin Type-A Receptor 2 (EPHA2) protein are provided that are particularly advantageous for quantifying the EPHA2 protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: April 4, 2014
    Publication date: November 13, 2014
    Inventors: David B. Krizman, Wei-Li Liao, Sheeno Thyparambil, Todd Hembrough
  • Publication number: 20140322245
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Insulin Receptor protein (IR), and its isoforms IR-A and IR-B, that are particularly advantageous for quantifying the IR protein, IR-A isoform and/or IR-B isoform, directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: David B. KRIZMAN, Wei-Li LIAO, Sheeno THYPARAMBIL, Todd HEMBROUGH
  • Publication number: 20140213478
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Receptor Tyrosine-Protein Kinase erbB-4 Protein (HER4) protein are provided that are particularly advantageous for quantifying the HER4 protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed where the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: April 4, 2014
    Publication date: July 31, 2014
    Inventors: David B. KRIZMAN, Wei-Li LIAO, Sheeno THYPARAMBIL, Todd HEMBROUGH
  • Publication number: 20140206776
    Abstract: Specific peptides, and derived ionization characteristics of those peptides from Death Receptor 5 (DR5) protein are provided that are particularly advantageous for quantifying the DR5 protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring/Multiple Reaction Monitoring (SRM/MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Inventors: David B. KRIZMAN, Todd HEMBROUGH, Sheeno THYPARAMBIL, Wei-Li LIAO
  • Publication number: 20140206775
    Abstract: Specific peptides, and derived ionization characteristics of the peptides, from the Fatty acid synthase (FASN) protein are provided that are particularly advantageous for quantifying the FASN protein directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring (SRM) mass spectrometry, or what can also be termed as Multiple Reaction Monitoring (MRM) mass spectrometry. Such biological samples are chemically preserved and fixed and are selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Inventors: David B. KRIZMAN, Todd HEMBROUGH, Sheeno THYPARAMBIL, Wei-Li LIAO
  • Publication number: 20140199717
    Abstract: The current disclosure provides specific peptides, and derived ionization characteristics of the peptides from the estrogen receptor (ER), progesterone receptor (PR), and/or antigen Ki67 (Ki67) proteins that are particularly advantageous for quantifying the ER, PR, and/or Ki67 proteins directly in biological samples that have been fixed in formalin by the method of Selected Reaction Monitoring/Multiple Reaction Monitoring (SRM/MRM) mass spectrometry. Such biological samples are chemically preserved and fixed wherein the biological sample is selected from tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin-fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 17, 2014
    Inventors: David B. KRIZMAN, Todd HEMBROUGH, Sheeno THYPARAMBIL, Wei-Li LIAO
  • Patent number: 8728753
    Abstract: Peptides from the Insulin-Like Growth Factor 1 Receptor (IGF-1R) protein are provided that are particularly advantageous for quantifying the IGF-1 R protein directly in biological samples, such as samples fixed in formalin. The ionization characteristics of the peptides also are disclosed. The peptides may be used in Selected Reaction Monitoring (SRM) mass spectrometry methods, also referred to Multiple Reaction Monitoring (MRM) mass spectrometry methods. The samples are chemically preserved and fixed, such as tissues and cells treated with formaldehyde containing agents/fixatives including formalin-fixed tissue/cells, formalin fixed/paraffin embedded (FFPE) tissue/cells, FFPE tissue blocks and cells from those blocks, and tissue culture cells that have been formalin fixed and or paraffin embedded. A protein sample may be prepared from the biological sample and the IGF-IR protein is quantitated by the method of SRM/MRM mass spectrometry by quantitating one or more of the described peptides.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 20, 2014
    Assignee: Expression Pathology Incorporated
    Inventors: David B. Krizman, Todd Hembrough, Sheeno Thyparambil