Patents by Inventor David Bashford

David Bashford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11899160
    Abstract: A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: February 13, 2024
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Publication number: 20230305185
    Abstract: A power beaming system includes a power beam transmitter arranged to transmit the power beam, and a power beam receiver arranged to receive the power beam from the power beam transmitter. A power beam transmission source is arranged to generate a laser light beam for transmission by the power beam transmitter from a first location toward a remote second location. A beam-shaping element shapes the laser light beam, at least one diffusion element uniformly distributes light of the shaped laser light beam, and a projection element illuminates a power beam receiving element of predetermined shape with the shaped laser light beam. At the power beam receiver, a diffusion surface diffuses a portion the power beam specularly reflected from the power beam receiver.
    Type: Application
    Filed: May 8, 2023
    Publication date: September 28, 2023
    Applicant: LaserMotive, Inc.
    Inventors: Jordin T. KARE, Thomas J. NUGENT, JR., David BASHFORD
  • Publication number: 20230296803
    Abstract: A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector.
    Type: Application
    Filed: August 26, 2022
    Publication date: September 21, 2023
    Inventors: Jordin T. Kare, Thomas J. Nugent, David Bashford, Carston Casey Erickson, Thomas W. Bashford
  • Patent number: 11681071
    Abstract: A power beaming system includes a power beam transmitter arranged to transmit the power beam, and a power beam receiver arranged to receive the power beam from the power beam transmitter. A power beam transmission source is arranged to generate a laser light beam for transmission by the power beam transmitter from a first location toward a remote second location. A beam-shaping element shapes the laser light beam, at least one diffusion element uniformly distributes light of the shaped laser light beam, and a projection element illuminates a power beam receiving element of predetermined shape with the shaped laser light beam. At the power beam receiver, a diffusion surface diffuses a portion the power beam specularly reflected from the power beam receiver.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 20, 2023
    Inventors: Jordin T. Kare, Thomas J. Nugent, Jr., David Bashford
  • Patent number: 11442195
    Abstract: A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: September 13, 2022
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Publication number: 20220224170
    Abstract: A method of monitoring a location of a power beam includes monitoring an electrical property of PV cells or subgroups of PV cells in a PV cell array and using the monitored electrical property to determine a location of the power beam. The determined location may be compared to a target location on the PV cell array and used to steer the power beam closer to the target location.
    Type: Application
    Filed: May 21, 2020
    Publication date: July 14, 2022
    Inventors: Thomas J. NUGENT, Jr., Thomas W. BASHFORD, David BASHFORD
  • Publication number: 20220224165
    Abstract: A remote power system includes a remote power transmitter arranged to output a power beam in a startup mode and a remote power receiver arranged to receive the power beam. The remote power receiver has a plurality of photovoltaic (PV) cells (or other power converters) mounted to generate electrical power from energy in the power beam, startup power monitoring (SPM) logic to determine, based on electrical power generated by each of the plurality of PV cells, whether or not the remote power transmitter can operate in a high-flux mode, and a receiver-based transmitter circuit arranged to communicate an indication that the remote power transmitter can operate in the high-flux mode.
    Type: Application
    Filed: May 21, 2020
    Publication date: July 14, 2022
    Inventors: Thomas J. NUGENT, Jr., Thomas W. BASHFORD, David BASHFORD, Alexander HAY
  • Publication number: 20220224164
    Abstract: A remote power system includes a remote power transmitter arranged to output a high-flux power beam and a remote power receiver arranged to receive the high-flux power beam. The receiver has a plurality of photo-voltaic (PV) cells mounted to generate electrical power from energy in the high-flux power beam, at least one non-PV structure adjacent to each PV cell, and a plurality of structures to steer flux toward selected ones of the plurality of PV cells and away from selected ones of the at least one non-PV structure.
    Type: Application
    Filed: May 21, 2020
    Publication date: July 14, 2022
    Inventors: Thomas J. NUGENT, Jr., Thomas W. BASHFORD, Alexander HAY, David BASHFORD
  • Publication number: 20220113444
    Abstract: Embodiments are directed towards a safety system that can be used with a high-flux power beam, such as in wireless power transmission. The system includes a transmitter that generates and transmits a power beam and a receiver that receives the power beam. A plurality of sensors is configured to independently detect if an object is near, impeding, or about to impede (i.e., impinging) the power beam. Each of the plurality of sensors is configured to detect the object at different distances between the transmitter and the receiver. A controller triggers the transmitter to stop generating the power beam when any one or more of the plurality of sensors detects the object or a combination of the plurality of sensors detects the object. The controller triggers the transmitter to re-generate and transmit the power beam when each of the plurality of sensors fails to detect the object.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Applicant: LaserMotive, Inc.
    Inventors: Jordin T. KARE, Thomas J. NUGENT, JR., David BASHFORD, Carsten ERICKSON, Thomas W. BASHFORD
  • Patent number: 11209570
    Abstract: Embodiments are directed towards a safety system that can be used with a high-flux power beam, such as in wireless power transmission. The system includes a transmitter that generates and transmits a power beam and a receiver that receives the power beam. A plurality of sensors is configured to independently detect if an object is near, impeding, or about to impede (i.e., impinging) the power beam. Each of the plurality of sensors is configured to detect the object at different distances between the transmitter and the receiver. A controller triggers the transmitter to stop generating the power beam when any one or more of the plurality of sensors detects the object or a combination of the plurality of sensors detects the object. The controller triggers the transmitter to re-generate and transmit the power beam when each of the plurality of sensors fails to detect the object.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: December 28, 2021
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, Jr., David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Publication number: 20210373196
    Abstract: A power beaming system includes a power beam transmitter arranged to transmit the power beam, and a power beam receiver arranged to receive the power beam from the power beam transmitter. A power beam transmission source is arranged to generate a laser light beam for transmission by the power beam transmitter from a first location toward a remote second location. A beam-shaping element shapes the laser light beam, at least one diffusion element uniformly distributes light of the shaped laser light beam, and a projection element illuminates a power beam receiving element of predetermined shape with the shaped laser light beam. At the power beam receiver, a diffusion surface diffuses a portion the power beam specularly reflected from the power beam receiver.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Applicant: LaserMotive, Inc.
    Inventors: Jordin T. KARE, Thomas J. NUGENT, JR., David BASHFORD
  • Patent number: 11105954
    Abstract: A power beaming system includes a power beam transmitter arranged to transmit the power beam, and a power beam receiver arranged to receive the power beam from the power beam transmitter. A power beam transmission source is arranged to generate a laser light beam for transmission by the power beam transmitter from a first location toward a remote second location. A beam-shaping element shapes the laser light beam, at least one diffusion element uniformly distributes light of the shaped laser light beam, and a projection element illuminates a power beam receiving element of predetermined shape with the shaped laser light beam. At the power beam receiver, a diffusion surface diffuses a portion the power beam specularly reflected from the power beam receiver.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: August 31, 2021
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, Jr., David Bashford
  • Publication number: 20210050465
    Abstract: A device for converting electromagnetic radiation into electricity comprises an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation; and one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation. With the expander's curved surface, a beam of electromagnetic radiation that is highly concentrated—has a large radiation flux—may be converted into a beam that has a larger cross-sectional area. Moreover, one can configure, if desired, the curved surface to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components can efficiently convert some of the electromagnetic radiation into electricity.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 18, 2021
    Applicant: LaserMotive, Inc.
    Inventors: Jordin T. Kare, Thomas J. Nugent, JR., David Bashford
  • Publication number: 20210033747
    Abstract: A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Jordin T. Kare, Thomas J. Nugent, David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Patent number: 10825944
    Abstract: A device for converting electromagnetic radiation into electricity comprises an expander that includes a conical shape having an axis and a curved surface that is configured to reflect electromagnetic radiation away from the axis to expand a beam of the electromagnetic radiation; and one or more energy conversion components configured to receive a beam of electromagnetic radiation expanded by the expander, and to generate electricity from the expanded beam of electromagnetic radiation. With the expander's curved surface, a beam of electromagnetic radiation that is highly concentrated—has a large radiation flux—may be converted into a beam that has a larger cross-sectional area. Moreover, one can configure, if desired, the curved surface to provide a substantially uniform distribution of radiation across the expanded cross-sectional area. With such an expanded beam the one or more energy conversion components can efficiently convert some of the electromagnetic radiation into electricity.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: November 3, 2020
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T Kare, Thomas J. Nugent, Jr., David Bashford
  • Patent number: 10816694
    Abstract: A system to detect obstacles includes a power beam transmission circuit, a power beam reception circuit arranged to receive a power beam from the power beam transmission circuit, an emitter module, and a detector module arranged to distinguish between a first characteristic and a second characteristic. The emitter module includes a first emitter arranged to emit a first signal having the first characteristic, the first signal emitted in proximity to the power beam, and a second emitter arranged to emit a second signal having the second characteristic, the second characteristic different from the first characteristic, the second signal emitted in proximity to the first signal. The detector module includes a first detector arranged to respond to the first signal emitted by the first emitter, wherein the detector module is arranged to determine when an obstacle is in or near a line-of-sight transmission path between the first emitter and the first detector.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: October 27, 2020
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, Jr., David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Publication number: 20200241165
    Abstract: Embodiments are directed towards a safety system that can be used with a high-flux power beam, such as in wireless power transmission. The system includes a transmitter that generates and transmits a power beam and a receiver that receives the power beam. A plurality of sensors is configured to independently detect if an object is near, impeding, or about to impede (i.e., impinging) the power beam. Each of the plurality of sensors is configured to detect the object at different distances between the transmitter and the receiver. A controller triggers the transmitter to stop generating the power beam when any one or more of the plurality of sensors detects the object or a combination of the plurality of sensors detects the object. The controller triggers the transmitter to re-generate and transmit the power beam when each of the plurality of sensors fails to detect the object.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: Jordin T. Kare, Thomas J. Nugent, JR., David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Patent number: 10673375
    Abstract: An electromagnetic energy receiving device includes an energy conversion component and an opto-mechanical coupling. The opto-mechanical coupling is arranged to receive a fiber-based conduit. The energy conversion component includes at least one internal surface having an arced profile of radius R, and the internal surface has a plurality of photovoltaic (PV) assemblies arranged thereon such that each one of the plurality of PV assemblies is shingled upon at least one adjacent PV assembly.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: June 2, 2020
    Assignee: LASERMOTIVE, INC.
    Inventors: Thomas W. Bashford, Thomas J. Nugent, Jr., David Bashford
  • Patent number: 10634813
    Abstract: Embodiments are directed towards a safety system that can be used with a high-flux power beam, such as in wireless power transmission. The system includes a transmitter that generates and transmits a power beam and a receiver that receives the power beam. A plurality of sensors is configured to independently detect if an object is near, impeding, or about to impede (i.e., impinging) the power beam. Each of the plurality of sensors is configured to detect the object at different distances between the transmitter and the receiver. A controller triggers the transmitter to stop generating the power beam when any one or more of the plurality of sensors detects the object or a combination of the plurality of sensors detects the object. The controller triggers the transmitter to re-generate and transmit the power beam when each of the plurality of sensors fails to detect the object.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: April 28, 2020
    Assignee: LASERMOTIVE, INC.
    Inventors: Jordin T. Kare, Thomas J. Nugent, Jr., David Bashford, Carsten Casey Erickson, Thomas W. Bashford
  • Patent number: 10580921
    Abstract: An electromagnetic energy transmitting device includes a processing unit, a light-detecting sensor coupled to the processing unit, and a high-flux electromagnetic energy transmitter. An electromagnetic energy receiver arranged to convert received light into electricity. A first fiber-based conduit couples the high-flux electromagnetic energy transmitter to the electromagnetic energy receiver. The first fiber-based conduit is arranged to pass high-flux light from the high-flux electromagnetic energy transmitter to the electromagnetic energy receiver. A second fiber-based conduit couples the electromagnetic energy receiver to the light-detecting sensor. The second fiber-based conduit is arranged to pass at least some light from the electromagnetic energy receiver to the light-detecting sensor, wherein the processing unit is arranged to control an output of the high-flux light from the high-flux source based on a control signal from the light-detecting sensor.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 3, 2020
    Assignee: LASERMOTIVE, INC.
    Inventors: Thomas J. Nugent, Jr., Thomas W. Bashford, David Bashford, Alexander Hay