Patents by Inventor David C. Long
David C. Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190384942Abstract: The present invention relates to a method to fabricate a tamper respondent assembly. The tamper respondent assembly includes an electronic component and an enclosure fully enclosing the electronic component. The method includes printing, by a 3-dimensional printer, a printed circuit board that forms a bottom part of the enclosure and includes a first set of embedded detection lines for detecting tampering events and signal lines for transferring signals between the electronic component and an external device. The electronic component is assembled on the printed circuit board, and a cover part of the enclosure is printed on the printed circuit board. The cover part includes a second set of embedded detection lines. Sensing circuitry can be provided for sensing the conductance of the first set of embedded detection lines and the second set of embedded detection lines to detect tampering events.Type: ApplicationFiled: June 13, 2018Publication date: December 19, 2019Inventors: Silvio Dragone, Michael Fisher, William Santiago Fernandez, Ryan Elsasser, James Busby, John R. Dangler, William L. Brodsky, David C. Long, Stefano S. Oggioni
-
Publication number: 20190313526Abstract: Tamper-respondent assemblies and fabrication methods are provided which utilize liquid crystal polymer layers in solid form. The tamper-respondent assemblies include a circuit board, and an enclosure assembly mounted to the circuit board to enclose one or more electronic components coupled to the circuit board within a secure volume. The assembly includes a tamper-respondent sensor that is a three-dimensional multilayer sensor structure, which includes multiple liquid crystal polymer layers, and at least one tamper-detect circuit. The at least one tamper-detect circuit includes one or more circuit lines in a tamper-detect pattern disposed on at least one liquid crystal polymer layer of the multiple liquid crystal polymer layers. Further, a monitor circuit is provided disposed within the secure volume to monitor the at least one tamper-detect circuit of the tamper-respondent sensor for a tamper event.Type: ApplicationFiled: April 4, 2018Publication date: October 10, 2019Inventors: James A. BUSBY, John R. DANGLER, Mark K. HOFFMEYER, William L. BRODSKY, William SANTIAGO-FERNANDEZ, David C. LONG, Silvio DRAGONE, Michael J. FISHER, Arthur J. HIGBY
-
Patent number: 10395067Abstract: Methods of fabricating tamper-respondent assemblies and electronic assembly packages are provided which include multiple, discrete tamper-respondent sensors that overlap, at least in part, and facilitate defining a secure volume about one or more electronic components to be protected, such as an electronic assembly. The tamper-respondent sensors include a first tamper-respondent sensor and a second tamper-respondent sensor, which may be similarly constructed or differently constructed. In certain embodiments, the tamper-respondent sensors wrap, at least in part, over an electronic enclosure, and in other embodiments, the tamper-respondent sensors cover, at least in part, an inner surface of an electronic enclosure to facilitate defining a secure volume in association with a multilayer circuit board to which the electronic enclosure is mounted.Type: GrantFiled: August 29, 2016Date of Patent: August 27, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, John R. Dangler, Phillip Duane Isaacs, David C. Long, Michael T. Peets
-
Publication number: 20190261506Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).Type: ApplicationFiled: February 26, 2019Publication date: August 22, 2019Inventors: Kathleen Ann FADDEN, James A. BUSBY, David C. LONG, John R. DANGLER, Alexandra ECHEGARAY, Michael J. FISHER, William SANTIAGO-FERNANDEZ
-
Patent number: 10378924Abstract: Methods of fabricating electronic circuits and electronic packages are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.Type: GrantFiled: September 20, 2018Date of Patent: August 13, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, Silvio Dragone, Roger S. Krabbenhoft, David C. Long, Stefano S. Oggioni, Michael T. Peets, William Santiago-Fernandez
-
Patent number: 10378925Abstract: Electronic circuits, electronic packages, and methods of fabrication are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.Type: GrantFiled: October 17, 2018Date of Patent: August 13, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, Silvio Dragone, Roger S. Krabbenhoft, David C. Long, Stefano S. Oggioni, Michael T. Peets, William Santiago-Fernandez
-
Publication number: 20190220628Abstract: Tamper-respondent assemblies, electronic assembly packages, and methods of fabrication are provided which include multiple, discrete tamper-respondent sensors that overlap, at least in part, and facilitate defining a secure volume about one or more electronic components to be protected, such as an electronic assembly. The tamper-respondent sensors include a first tamper-respondent sensor and a second tamper-respondent sensor, which may be similarly constructed or differently constructed. In certain embodiments, the tamper-respondent sensors wrap, at least in part, over an electronic enclosure, and in other embodiments, the tamper-respondent sensors cover, at least in part, an inner surface of an electronic enclosure to facilitate defining a secure volume in association with a multilayer circuit board to which the electronic enclosure is mounted.Type: ApplicationFiled: March 20, 2019Publication date: July 18, 2019Inventors: William L. BRODSKY, John R. DANGLER, Phillip Duane ISAACS, David C. LONG, Michael T. PEETS
-
Patent number: 10331915Abstract: Tamper-respondent assemblies, electronic assembly packages, and methods of fabrication are provided which include multiple, discrete tamper-respondent sensors that overlap, at least in part, and facilitate defining a secure volume about one or more electronic components to be protected, such as an electronic assembly. The tamper-respondent sensors include a first tamper-respondent sensor and a second tamper-respondent sensor, which may be similarly constructed or differently constructed. In certain embodiments, the tamper-respondent sensors wrap, at least in part, over an electronic enclosure, and in other embodiments, the tamper-respondent sensors cover, at least in part, an inner surface of an electronic enclosure to facilitate defining a secure volume in association with a multilayer circuit board to which the electronic enclosure is mounted.Type: GrantFiled: November 21, 2017Date of Patent: June 25, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, John R. Dangler, Phillip Duane Isaacs, David C. Long, Michael T. Peets
-
Patent number: 10334722Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming at least one resistive network. The circuit lines are disposed on at least one of the first or second side of the at least one flexible layer, and have a line width Wl?200 ?m, as well as a line-to-line spacing width Ws?200 ?m. In certain enhanced embodiments, the tamper-respondent sensor includes multiple flexible layers, with a first flexible layer having first circuit lines, and a second flexible layer having second circuit lines, where the first and second circuit lines may have different line widths, different line-to-line spacings, and/or be formed of different materials.Type: GrantFiled: November 1, 2017Date of Patent: June 25, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, James A. Busby, Phillip Duane Isaacs, David C. Long
-
Patent number: 10327343Abstract: Assembly apparatuses and processes are provided which include a pressure cure fixture. The pressure cure fixture is sized to reside within a container, such as an electronic enclosure, and facilitate applying pressure to an adhesive disposed over an inner surface of the container. The pressure cure fixture is formed of a material with a higher coefficient of thermal expansion (CTE) than the container, and is sized to correspond, at least in part, to an inner space of the container while allowing for the adhesive and a surface-mount element to be disposed between the pressure cure fixture and the inner surface of the container. When heated, the pressure cure fixture expands greater than the container and imparts the pressure to the surface-mount element and the adhesive to facilitate securing the surface-mount element to the inner surface of the container.Type: GrantFiled: June 27, 2016Date of Patent: June 18, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Michael J. Fisher, David C. Long, Donald Merte, Robert Weiss, Thomas Weiss
-
Patent number: 10327329Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include an enclosure, an in-situ-formed tamper-detect sensor, and one or more flexible tamper-detect sensors. The enclosure encloses, at least in part, one or more electronic components to be protected, and the in-situ-formed tamper-detect sensor is formed in place over an inner surface of the enclosure. The flexible tamper-detect sensor(s) is disposed over the in-situ-formed tamper-detect sensor, such that the in-situ-formed tamper-detect sensor is between the inner surface of the enclosure and the flexible tamper-detect sensor(s). Together the in-situ-formed tamper-detect sensor and flexible tamper-detect sensor(s) facilitate defining, at least in part, a secure volume about the one or more electronic components.Type: GrantFiled: February 13, 2017Date of Patent: June 18, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, James A. Busby, John R. Dangler, Silvio Dragone, Michael J. Fisher, David C. Long
-
Patent number: 10306753Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure-to-circuit board protection. The tamper-respondent assemblies include a circuit board, and an enclosure mounted to the circuit board along an enclosure-to-board interface. The enclosure facilitates enclosing at least one electronic component coupled to the circuit board within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and includes one or more tamper-detect circuits including at least one conductive trace disposed, at least in part, within the enclosure-to-board interface. The conductive trace(s) includes stress rise regions to facilitate tamper-detection at the enclosure-to-board interface. An adhesive is provided to secure the enclosure to the circuit board. The adhesive contacts, at least in part, the conductive trace(s) of the tamper-detect circuit(s) at the enclosure-to-board interface, including at the stress rise regions of the conductive trace(s).Type: GrantFiled: February 22, 2018Date of Patent: May 28, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Kathleen Ann Fadden, James A. Busby, David C. Long, John R. Dangler, Alexandra Echegaray, Michael J. Fisher, William Santiago-Fernandez
-
Patent number: 10271434Abstract: Methods of fabricating tamper-respondent assemblies provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes a tamper-respondent sensor. The tamper-respondent sensor includes, for instance, at least one flexible layer having opposite first and second sides, and circuit lines forming, at least in part, at least one tamper-detect network, such as one or more resistive networks. The circuit lines are disposed on at least one of the first side or the second side of the at least one flexible layer. At least one region of the tamper-respondent sensor is fabricated with increased susceptibility to damage from mechanical stress associated with a tamper event. The at least one region of increased susceptibility to damage facilitates detection of the tamper event by the tamper-respondent sensor.Type: GrantFiled: August 29, 2016Date of Patent: April 23, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: John R. Dangler, David C. Long, Michael T. Peets
-
Patent number: 10264665Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor having unexposed circuit lines forming, at least in part, one or more tamper-detect network(s), and the tamper-respondent sensor having at least one external bond region. The tamper-respondent assembly further includes at least one conductive trace and an adhesive. The conductive trace(s) forms, at least in part, the one or more tamper-detect network(s), and is exposed, at least in part, on the tamper-respondent sensor(s) within the external bond region(s). The adhesive contacts the conductive trace(s) within the external bond region(s) of the tamper-respondent sensor(s), and the adhesive, in part, facilitates securing the at least one tamper-respondent sensor within the tamper-respondent assembly. In enhanced embodiments, the conductive trace(s) is a chemically compromisable conductor susceptible to damage during a chemical attack on the adhesive within the external bond region(s).Type: GrantFiled: December 8, 2017Date of Patent: April 16, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: William L. Brodsky, James A. Busby, Zachary T. Dreiss, Michael J. Fisher, David C. Long, William Santiago-Fernandez, Thomas Weiss
-
Patent number: 10257924Abstract: Tamper-proof electronic packages and fabrication methods are provided which include a glass enclosure enclosing, at least in part, at least one electronic component within a secure volume, and a tamper-respondent detector. The glass enclosure includes stressed glass with a compressively-stressed surface layer, and the tamper-respondent detector monitors, at least in part, the stressed glass to facilitate defining the secure volume. The stressed glass fragments with an attempted intrusion event through the stressed glass, and the tamper-respondent detector detects the fragmenting of the stressed glass. In certain embodiments, the stressed glass may be a machined glass enclosure that has undergone ion-exchange processing, and the compressively-stressed surface layer of the stressed glass may be compressively-stressed to ensure that the stressed glass fragments into glass particles of fragmentation size less than 1000 ?m with the intrusion event.Type: GrantFiled: December 5, 2017Date of Patent: April 9, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: James A. Busby, Silvio Dragone, Michael J. Fisher, Michael A. Gaynes, David C. Long, Kenneth P. Rodbell, William Santiago-Fernandez, Thomas Weiss
-
Patent number: 10257939Abstract: Methods of fabricating tamper-respondent electronic circuit structures and electronic assembly packages are provided which include, at least in part, a tamper-respondent sensor including one or more formed flexible layers of, for instance, a dielectric material, having opposite first and second sides, and circuit lines defining at least one resistive network. The circuit lines are disposed on at least one of the first side or the second side of the formed flexible layer(s). The formed flexible layer(s) with the circuit lines includes curvatures, and the circuit lines overlie, at least in part, the curvatures of the formed flexible layer(s). In certain embodiments, the formed flexible layer(s) may be one or more corrugated layers or one or more flattened, folded layers.Type: GrantFiled: August 29, 2016Date of Patent: April 9, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: John R. Dangler, Phillip Duane Isaacs, David C. Long
-
Patent number: 10251288Abstract: Tamper-respondent assemblies, electronic packages and fabrication methods are provided which incorporate a vent structure. The tamper-respondent assembly includes an electronic enclosure to enclose, at least in part, an electronic component(s) to be protected. The electronic enclosure includes an inner surface, and an air vent. A tamper-respondent electronic circuit structure is provided which includes a tamper-respondent sensor disposed to cover, at least part, the inner surface of the electronic enclosure, and define, at least in part, a secure volume about the electronic component(s). The vent structure includes at least one air passage coupling in fluid communication the secure volume and the air vent of the electronic enclosure to allow air pressure within the secure volume to equalize with air pressure external to the tamper-respondent assembly.Type: GrantFiled: December 11, 2017Date of Patent: April 2, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Michael J. Fisher, David C. Long, Michael T. Peets, Robert Weiss, Thomas Weiss, James E. Tersigni
-
Patent number: 10242931Abstract: A heat sink and method for using the same for use in cooling an integrated circuit (IC) chip is provided herein. The heat sink includes a manifold block, a liquid-filled cooling system, and a compliant foil affixed to the manifold block and backed by a liquid in the closed loop cooling system. The pressure provided by the liquid behind the foil causes the foil to bow, and to conform to non-planarities in the surface of the IC chip, thus reducing air gaps and increasing thermal coupling between the IC chip and the heat sink.Type: GrantFiled: November 10, 2015Date of Patent: March 26, 2019Assignee: International Business Machines CorporationInventors: Raschid J. Bezama, David C. Long, Govindarajan Natarajan, Thomas Weiss
-
Publication number: 20190049269Abstract: Electronic circuits, electronic packages, and methods of fabrication are provided. The electronic circuit includes a multilayer circuit board, and a tamper-respondent sensor embedded within the circuit board. The tamper-respondent sensor defines, at least in part, a secure volume associated with the multilayer circuit board. In certain implementations, the tamper-respondent sensor includes multiple tamper-respondent layers embedded within the circuit board including, for instance, one or more tamper-respondent frames and one or more tamper-respondent mat layers, with the tamper-respondent frame(s) being disposed, at least in part, above the tamper-respondent mat layer(s), which together define the secure volume where extending into the multilayer circuit board.Type: ApplicationFiled: October 17, 2018Publication date: February 14, 2019Inventors: William L. BRODSKY, Silvio DRAGONE, Roger S. KRABBENHOFT, David C. LONG, Stefano S. OGGIONI, Michael T. PEETS, William SANTIAGO-FERNANDEZ
-
Publication number: 20190037687Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). In addition, the tamper-respondent sensor(s) includes at least one interconnect element associated with one or more conductive lines of the conductive lines forming, at least in part, the tamper-detect network(s). The interconnect element(s) includes at least one interconnect characteristic selected to facilitate obscuring a circuit lay of the at least one tamper-detect network. In operation, the detector monitors the tamper-detect network(s) of the tamper-respondent sensor(s) for a tamper event.Type: ApplicationFiled: November 13, 2017Publication date: January 31, 2019Inventors: James A. BUSBY, John R. DANGLER, Michael J. FISHER, David C. LONG