Patents by Inventor David Eaglesham

David Eaglesham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110070721
    Abstract: Apparatus and methods are described for fabricating a compound nitride semiconductor structure. Group-III and nitrogen precursors are flowed into a first processing chamber to deposit a first layer over a substrate with a thermal chemical-vapor-deposition process. The substrate is transferred from the first processing chamber to a second processing chamber. Group-III and nitrogen precursors are flowed into the second processing chamber to deposit a second layer over the first layer with a thermal chemical-vapor-deposition process. The first and second group-III precursors have different group-III elements.
    Type: Application
    Filed: November 24, 2010
    Publication date: March 24, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Sandeep NIJHAWAN, David Bour, Lori Washington, Jacob Smith, Ronald Stevens, David Eaglesham
  • Publication number: 20110031113
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 10, 2011
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20100319775
    Abstract: A method for manufacturing a multi-layered structure can include annealing a stack, where the annealing can include heating the stack in the presence of an inert gas, and where the stack includes a layer including cadmium and tin.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 23, 2010
    Applicant: First Solar, Inc.
    Inventors: Scott Mills, Dale Roberts, David Eaglesham, Benyamin Buller, Boil Pashmakov, Zhibo Zhao, Yu Yang
  • Publication number: 20100282320
    Abstract: A photovoltaic cell can include an interfacial layer in contact with a semiconductor layer.
    Type: Application
    Filed: July 23, 2010
    Publication date: November 11, 2010
    Applicant: First Solar, Inc.
    Inventors: Peter Meyers, Akhlesh Gupta, David Eaglesham
  • Patent number: 7799182
    Abstract: Embodiments of the invention contemplate the formation of a low cost flexible solar cell using a novel electroplating method and apparatus to form a metal contact structure. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. Solar cell substrates that may benefit from the invention include flexible substrates may have an active region that contains organic material, single crystal silicon, multi-crystalline silicon, polycrystalline silicon, germanium, and gallium arsenide, cadmium telluride, cadmium sulfide, copper indium gallium selenide, copper indium selenide, gallilium indium phosphide, as well as heterojunction cells that are used to convert sunlight to electrical power.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, David Eaglesham, Charles Gay
  • Publication number: 20100186812
    Abstract: A copper indium gallium selenide photovoltaic cell can include a substrate having a transparent conductive oxide layer. The copper indium gallium selenide can be deposited using sputtering and vapor transport deposition.
    Type: Application
    Filed: November 20, 2009
    Publication date: July 29, 2010
    Applicant: First Solar, Inc.
    Inventor: David Eaglesham
  • Patent number: 7736928
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel electroplating apparatus and method to form a metal contact structure having metal lines formed using an electrochemical plating process. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation and formation steps, such as screen printing, lithographic steps and inkjet printing steps, to form a contact structure. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, John O. Dukovic, David Eaglesham, Nicolay Y. Kovarsky, Robert Bachrach, John Busch, Charles Gay
  • Publication number: 20100116337
    Abstract: A tandem module photovoltaic cell can include an organic module in parallel with a semiconductor module.
    Type: Application
    Filed: October 1, 2009
    Publication date: May 13, 2010
    Applicant: First Solar, Inc.
    Inventor: David Eaglesham
  • Patent number: 7704352
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 27, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20100059112
    Abstract: A photovoltaic cell can include a dopant in contact with a semiconductor layer.
    Type: Application
    Filed: July 22, 2009
    Publication date: March 11, 2010
    Applicant: First Solar, Inc.
    Inventors: Akhlesh Gupta, Rick C. Powell, David Eaglesham
  • Publication number: 20090255578
    Abstract: A method of manufacturing a thin film photovoltaic device includes depositing a first compound semiconductor layer on a substrate and exposing the device to plasma, the plasma treating the layer.
    Type: Application
    Filed: January 15, 2009
    Publication date: October 15, 2009
    Applicant: First Solar, Inc.
    Inventors: David Eaglesham, Anke Abken
  • Patent number: 7585769
    Abstract: A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the III-V nitride layer on the substrate.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Jacob W. Smith, Sandeep Nijhawan, Lori D. Washington, David Eaglesham
  • Publication number: 20090211637
    Abstract: A photovoltaic cell can include a heterojunction between semiconductor layers.
    Type: Application
    Filed: September 24, 2008
    Publication date: August 27, 2009
    Applicant: First Solar, Inc.
    Inventor: David Eaglesham
  • Patent number: 7575982
    Abstract: Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: August 18, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori Washington, Jacob Smith, David Eaglesham
  • Patent number: 7547570
    Abstract: Processing steps that are useful for forming interconnects in a photovoltaic module are described herein. According to one aspect, a method according to the invention includes processing steps that are similar to those performed in conventional integrated circuit fabrication. For example, the method can include etches to form a conductive step adjacent to the grooves that can be used to form interconnects between cells. According to another aspect the method for forming the conductive step can be self-aligned, such as by positioning a mirror above the module and exposing photoresist from underneath the substrate at an angle one or more times, and etching to expose the conductive step.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Peter Borden, David Eaglesham
  • Publication number: 20090078318
    Abstract: A photovoltaic cell can include an interfacial layer in contact with a semiconductor layer.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 26, 2009
    Applicant: First Solar, Inc.
    Inventors: Peter Meyers, Akhlesh Gupta, David Eaglesham
  • Patent number: 7470599
    Abstract: Methods are provided of fabricating a nitride semiconductor structure. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over one side of the substrate with a thermal chemical-vapor-deposition process. A second layer is similarly deposited over an opposite side of the substrate using the group-III precursor and the nitrogen precursor. The substrate is cooled after depositing the first and second layers without substantially deforming a shape of the substrate.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Sandeep Nijhawan, David Eaglesham, Lori Washington, David Bour, Jacob Smith
  • Publication number: 20080128019
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey LOPATIN, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20080128268
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20080132082
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel electroplating apparatus and method to form a metal contact structure having metal lines formed using an electrochemical plating process. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation and formation steps, such as screen printing, lithographic steps and inkjet printing steps, to form a contact structure. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey Lopatin, John O. Dukovic, David Eaglesham, Nicolay Y. Kovarsky, Robert Bachrach, John Busch, Charles Gay