Patents by Inventor David F. Moore

David F. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190009932
    Abstract: An inflatable pressure structure includes an airtight flexible membrane having collapsed and inflated configurations. The inflatable pressure structure includes an elongated pressure-assisted seal that is configured to selectively seal an opening in the airtight flexible membrane. The pressure-assisted seal includes first and second seal components that sealingly engage one another and prevent escape of gas from inside the airtight flexible membrane. The airtight flexible membrane, when inflated, generates a force transverse to the pressure-assisted seal tending to pull the first and second seal components apart. Pressurized gas inside the airtight flexible membrane causes the first and second seal components to more securely engage one another whereby a force transverse to the pressure-assisted seal does not disengage the first and second seal components.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 10, 2019
    Inventors: William R. DOGGETT, Timothy S. ROACH, Jerry E. WARREN, Judith J. WATSON, Thomas C. JONES, Richard K. BIRD, Vincenzo M. LE BOFFE, William M. LANGFORD, Lana P. HICKS-OLSON, Samuel JAMES, Clarence E. STANFIELD, Alberto MAKINO, Bryan C. YOUNT, Khadijah I. SHARIFF, Molly M. SELIG, Douglas A. LITIEKEN, Winfred S. KENNER, David F. MOORE, Danny J. LOVAGLIO, Laura A. LEYBOLD, Earl T. HALL, James E. PHELPS, Arlon B. SULLIVAN, Fred M. WHITEHEAD
  • Publication number: 20180345026
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 6, 2018
    Applicant: EBR Systems, Inc.
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Publication number: 20180280704
    Abstract: Delivery of an implantable wireless receiver-stimulator (R-S) into the heart using delivery catheter is described. R-S comprises a cathode and an anode and wirelessly receives and converts energy, such as acoustic ultrasound energy, to electrical energy to stimulate the heart. Conductive wires routed through the delivery system temporarily connect R-S electrodes to external monitor and pacing controller. R-S comprises a first temporary electrical connection from the catheter to the cathode, and a second temporary electrical connection from the catheter to the anode. Temporary electrical connections allow external monitoring of heart's electrical activity as sensed by R-S electrodes to determine tissue viability for excitation as well as to assess energy conversion efficiency.
    Type: Application
    Filed: January 23, 2018
    Publication date: October 4, 2018
    Applicant: EBR Systems, Inc.
    Inventors: David F. Moore, Mark W. Cowan, N. Parker Willis
  • Patent number: 10052493
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 21, 2018
    Assignee: EBR Systems, Inc.
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Patent number: 9907968
    Abstract: Delivery of an implantable wireless receiver-stimulator (R-S) into the heart using delivery catheter is described. R-S comprises a cathode and an anode and wirelessly receives and converts energy, such as acoustic ultrasound energy, to electrical energy to stimulate the heart. Conductive wires routed through the delivery system temporarily connect R-S electrodes to external monitor and pacing controller. R-S comprises a first temporary electrical connection from the catheter to the cathode, and a second temporary electrical connection from the catheter to the anode. Temporary electrical connections allow external monitoring of heart's electrical activity as sensed by R-S electrodes to determine tissue viability for excitation as well as to assess energy conversion efficiency.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 6, 2018
    Assignee: EBR Systems, Inc.
    Inventors: David F. Moore, Mark W. Cowan, N. Parker Willis
  • Publication number: 20170215978
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Application
    Filed: March 24, 2017
    Publication date: August 3, 2017
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Patent number: 9629682
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 25, 2017
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Publication number: 20170086929
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Application
    Filed: October 3, 2016
    Publication date: March 30, 2017
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark
  • Publication number: 20160310749
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 27, 2016
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Patent number: 9457168
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: October 4, 2016
    Assignee: HANSEN MEDICAL, INC.
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark
  • Publication number: 20160158560
    Abstract: Delivery of an implantable wireless receiver-stimulator (R-S) into the heart using delivery catheter is described. R-S comprises a cathode and an anode and wirelessly receives and converts energy, such as acoustic ultrasound energy, to electrical energy to stimulate the heart. Conductive wires routed through the delivery system temporarily connect R-S electrodes to external monitor and pacing controller. R-S comprises a first temporary electrical connection from the catheter to the cathode, and a second temporary electrical connection from the catheter to the anode. Temporary electrical connections allow external monitoring of heart's electrical activity as sensed by R-S electrodes to determine tissue viability for excitation as well as to assess energy conversion efficiency.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: David F. Moore, Mark W. Cowan, N. Parker Willis
  • Patent number: 9343654
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 17, 2016
    Assignee: EBR Systems, Inc.
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Patent number: 9283392
    Abstract: Delivery of an implantable wireless receiver-stimulator (R-S) into the heart using delivery catheter is described. R-S comprises a cathode and an anode and wirelessly receives and converts energy, such as acoustic ultrasound energy, to electrical energy to stimulate the heart. Conductive wires routed through the delivery system temporarily connect R-S electrodes to external monitor and pacing controller. R-S comprises a first temporary electrical connection from the catheter to the cathode, and a second temporary electrical connection from the catheter to the anode. Temporary electrical connections allow external monitoring of heart's electrical activity as sensed by R-S electrodes to determine tissue viability for excitation as well as to assess energy conversion efficiency.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 15, 2016
    Assignee: EBR Systems, Inc.
    Inventors: David F. Moore, Mark W. Cowan, N. Parker Willis
  • Publication number: 20160035967
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Patent number: 9180285
    Abstract: Receiver-stimulator with folded or rolled up assembly of piezoelectric components, causing the receiver-stimulator to operate with a high degree of isotropy are disclosed. The receiver-stimulator comprises piezoelectric components, rectifier circuitry, and at least two stimulation electrodes. Isotropy allows the receiver-stimulator to be implanted with less concern regarding the orientation relative the transmitted acoustic field from an acoustic energy source.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: November 10, 2015
    Assignee: EBR SYSTEMS, INC.
    Inventors: David F. Moore, Paul Mohr, N. Parker Willis, Axel F. Brisken
  • Patent number: 9134795
    Abstract: Directional haptic feedback provided in a haptic feedback interface device. An interface device includes at least two actuator assemblies, which each include a moving inertial mass. A single control signal provided to the actuator assemblies at different magnitudes provides directional inertial sensations felt by the user. A greater magnitude waveform can be applied to one actuator to provide a sensation having a direction approximately corresponding to a position of that actuator in the housing. In another embodiment, the actuator assemblies each include a rotary inertial mass and the control signals have different duty cycles to provide directional sensations. For power-consumption efficiency, the control signals can be interlaced or pulsed at a different frequency and duty cycle to reduce average power requirements.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: September 15, 2015
    Assignee: Immersion Corporation
    Inventors: Adam C. Braun, Louis B. Rosenberg, David F. Moore, Kenneth M. Martin, Alex S. Goldenberg
  • Publication number: 20150157412
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 11, 2015
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Patent number: 8974408
    Abstract: A robotic catheter system includes a controller with a master input device. An instrument driver is in communication with the controller and has a guide instrument interface including a plurality of guide instrument drive elements responsive to control signals generated, at least in part, by the master input device. An elongate guide instrument has a base, distal end, and a working lumen, wherein the guide instrument base is operatively coupled to the guide instrument interface. The guide instrument includes a plurality of guide instrument control elements operatively coupled to respective guide drive elements and secured to the distal end of the guide instrument. The guide instrument control elements are axially moveable relative to the guide instrument such that movement of the guide instrument distal end may be controlled by the master input device.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: March 10, 2015
    Assignee: Hansen Medical, Inc.
    Inventors: Daniel T. Wallace, Frederic H. Moll, Robert G. Younge, Kenneth M. Martin, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Michael R. Zinn, Gunter D. Niemeyer
  • Publication number: 20140296875
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 2, 2014
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark
  • Patent number: 8801661
    Abstract: The apparatus of one embodiment of the present invention is comprised of a flexible sheath instrument, a flexible guide instrument, and a tool. The flexible sheath instrument comprises a first instrument base removably coupleable to an instrument driver and defines a sheath instrument working lumen. The flexible guide instrument comprises a second instrument base removably coupleable to the instrument driver and is threaded through the sheath instrument working lumen. The guide instrument also defines a guide instrument working lumen. The tool is threaded through the guide instrument working lumen. For this embodiment of the apparatus, the sheath instrument and guide instrument are independently controllable relative to each other.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: August 12, 2014
    Assignee: Hansen Medical, Inc.
    Inventors: Frederic H. Moll, Daniel T. Wallace, Gregory J. Stahler, David F. Moore, Daniel T. Adams, Kenneth M. Martin, Robert G. Younge, Michael R. Zinn, Gunter D. Niemeyer, David Lundmark