Patents by Inventor David French

David French has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190183449
    Abstract: Methods and systems are described for operating an intra-oral imaging sensor that includes a housing, an image sensing component at least partially housed within the housing, and a temperature sensor. An output of the temperature indicative of a sensed temperature is received and evaluated to determine whether the intra-oral imaging sensor is positioned in the mouth of the patient. The determination of whether the temperature sensor may be based on one or more determined conditions including whether a current temperature exceeds a threshold, whether a first derivative of the sensed temperature exceeds a rate-of-change threshold, and whether a second derivative of the sensed temperature exceeds a temperature acceleration threshold. In some implementations, the operation of the intra-oral imaging sensor is automatically adjusted in response to a determination that the sensor has been placed inside the mouth of a patient.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Inventors: Scott David Kravis, Leonid Khatutskiy, James Paul Frerichs, Adrian David French, Kyle Alan Pixton
  • Patent number: 10302457
    Abstract: An integrated AMR angular sensor includes a first sensor resistor and a second sensor resistor. The first sensor resistor and the second sensor resistor each has a plurality of magnetoresistive segments containing magnetoresistive material that are electrically coupled in series. The magnetoresistive segments of each sensor resistor are parallel/anti-parallel to each other. The magnetoresistive segments of the second sensor resistor are perpendicular to the magnetoresistive segments of the first sensor resistor. The first magnetoresistive segments are divided into a first group and a second group, which are disposed in a balanced distribution relative to a sensor central point of the integrated AMR angular sensor. Similarly, the second magnetoresistive segments are divided into a first group and a second group, which are disposed in a balanced distribution relative to the sensor central point.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: May 28, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: William David French, Dok Won Lee
  • Patent number: 10299742
    Abstract: Methods and systems are described for operating an imaging system that includes an intra-oral imaging sensor, an image sensing component, a multi-dimensional sensor, and an electronic processor. The intra-oral imaging sensor includes a housing and the image sensor component and the multi-dimensional sensor are at least partially housed within the housing. The multi-dimensional sensor includes a three-dimensional accelerometer, a three-dimensional gyroscope, and a three-dimensional magnetometer. The electronic processor is configured to execute one or more error condition check routines to determine whether an error condition is present based on an output received from the multi-dimensional sensor.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 28, 2019
    Assignee: DENTAL IMAGING TECHNOLOGIES CORPORATION
    Inventors: Scott David Kravis, Leonid Khatutskiy, James Paul Frerichs, Adrian David French, Kyle Alan Pixton
  • Patent number: 10299741
    Abstract: Methods and systems are described for operating an imaging sensor, the imaging sensor including a multi-dimensional sensor. An electronic processor receives an output from the multi-dimensional sensor and transitions the imaging sensor from the low-power state into a ready state in response to a determination by the electronic processor, based on the output from the multi-dimensional sensor, that a first state transition criteria is satisfied and transitions the imaging sensor from the ready state into an armed state in response to a determination that a second state transition criteria is satisfied. In some implementations, the electronic processor operates the imaging sensor to capture image data only when operating in the armed state and prevents the imaging system from transitioning from the low-power state directly into the armed state.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: May 28, 2019
    Assignees: DENTAL IMAGING TECHNOLOGIES CORPORATION, TELEDYNE DALSA B.V.
    Inventors: Scott David Kravis, Leonid Khatutskiy, James Paul Frerichs, Adrian David French, Kyle Alan Pixton, Hein Loijens, Frank Polderdijk, Helmut Rosner
  • Publication number: 20190157342
    Abstract: Disclosed examples provide wafer-level integration of magnetoresistive sensors and Hall-effect sensors in a single integrated circuit, in which one or more vertical and/or horizontal Hall sensors are formed on or in a substrate along with transistors and other circuitry, and a magnetoresistive sensor circuit is formed in the IC metallization structure.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: Dok Won Lee, William David French, Keith Ryan Green
  • Patent number: 10291664
    Abstract: An apparatus, method, and program product are disclosed for collaborative project modification. One apparatus includes an enabling module that enables a first group of users to modify a first portion of a project in a collaborative environment. The apparatus includes a blocking module that blocks a second portion of the project from being modified by the first group of users. The apparatus includes an updating module that, for the first group of users, conducts immediate updates to the first portion of the project after a user of the first group of users modifies the first portion of the project and conducts deferred updates to the second portion of the project after a user of a second group of users modifies the second portion of the project.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: May 14, 2019
    Assignee: Brigham Young University
    Inventors: David French, Ammon Hepworth, Devin Shumway, Daniel Staves, Mark S. Trent
  • Patent number: 10276787
    Abstract: An integrated device includes a substrate having a semiconductor surface layer including functional circuitry, a lower metal stack on the semiconductor surface layer, an interlevel dielectric (ILD) layer on the lower metal stack, a top metal layer providing AMR contact pads and bond pads coupled to the AMR contact pads in the ILD layer. An AMR device is above the lower metal stack lateral to the functional circuitry including a patterned AMR stack including a seed layer, an AMR material layer, and a capping layer, wherein the seed layer is coupled to the AMR contact pads by a coupling structure. A protective overcoat (PO layer) is over the AMR stack. There are openings in the PO layer exposing the bond pads.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 30, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, William David French, Ricky Alan Jackson, Fuchao Wang
  • Patent number: 10261756
    Abstract: A computer-implemented method for preventing reference invalidation when reversing operations in synchronous collaborative applications may include (i) storing, on a client, a shared model of an engineering object including one or more features, (ii) receiving, from a user, an operation to be performed on the feature, (iii) before performing the operation, storing, in a command stack on the client, information sufficient to restore the feature to a state prior to performing the operation, (iv) receiving, from the user, a request to reverse the operation, (v) determining whether reversing the operation will create an invalid reference due to a conflicting operation having been performed on the feature at a second client, and (vi) in response to determining whether reversing the operation will create an invalid reference, reversing the operation or performing a resolution operation to prevent the reference invalidation. A system corresponding to the above method is also disclosed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 16, 2019
    Assignee: Brigham Young University
    Inventors: David French, Jeffrey Nuss, Glen Phelps, Walter Edward Red
  • Publication number: 20190071778
    Abstract: A thermal choke rod connecting a radio frequency source to a substrate support of a plasma processing system includes a tubular member having a first connector for connecting to an RF rod coupled to the substrate support and a second connector for connecting to an RF strap that couples to the RF source. A tubular segment extends between the first and second connectors. The first connector has a conically-shaped end region that tapers away from the inner surface thereof to an outer surface in a direction toward the tubular segment, and slits that extend for a prescribed distance from a terminal end of the first connector. The outer surface of the tubular segment has a threaded region for threaded engagement with an annular cap that fits over the first connector and reduces an inner diameter of the first connector upon contact with the conically-shaped end region of the first connector.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 7, 2019
    Inventors: Timothy S. Thomas, Vince Burkhart, Joel Hollingsworth, David French, Damien Slevin
  • Patent number: 10223515
    Abstract: A wearable device includes one or more biometric sensors, each of the one or more biometric sensors gathering biological data from a wearer of the wearable device, the wearable device further having a computer processor for receiving the biological data from the one or more biometric sensors and generating biometric information based on the biological data and according one or more biometrical algorithms, the biometric information including validation information to validate the wearer as a source of the biological data gathered by each of the one or more sensors, the biometric information further including sleep information to provide a sleep profile of the wearer.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 5, 2019
    Assignee: Sleep Data Services, LLC
    Inventors: Dominic Munafo, David French, Bretton Hevener, William Hevener, Thinh Nguyen
  • Patent number: 10213180
    Abstract: Methods and systems are described for operating an intra-oral imaging sensor that includes a housing, an image sensing component at least partially housed within the housing, and a magnetometer at least partially housed within the housing. An output of the magnetometer indicative of an actual magnetic field that impinges the intra-oral imaging sensor is compared to data indicative of a first expected magnetic field. In response to determining, based on the comparison, that the actual magnetic field matches the first expected magnetic field, the electronic processor alters the operation of the imaging system. In some embodiments, the electronic processor causes the intra-oral imaging sensor to operate in a low-power state in response to determining that the actual magnetic field matches a first expected magnetic field indicative of placement of the intra-oral imaging sensor in an imaging sensor storage compartment.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: February 26, 2019
    Assignees: DENTAL IMAGING TECHNOLOGIES CORPORATION, TELEDYNE DALSA B.V.
    Inventors: Scott David Kravis, Leonid Khatutskiy, James Paul Frerichs, Adrian David French, Kyle Alan Pixton
  • Patent number: 10211255
    Abstract: Disclosed examples provide wafer-level integration of magnetoresistive sensors and Hall-effect sensors in a single integrated circuit, in which one or more vertical and/or horizontal Hall sensors are formed on or in a substrate along with transistors and other circuitry, and a magnetoresistive sensor circuit is formed in the IC metallization structure.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, William David French, Keith Ryan Green
  • Publication number: 20190025086
    Abstract: Some embodiments are directed to an anisotropic magneto-resistive (AMR) angle sensor. The sensor comprises a first Wheatstone bridge comprising a first serpentine resistor, a second serpentine resistor, a third serpentine resistor, and a fourth serpentine resistor. The sensor also comprises a second Wheatstone bridge comprising a fifth serpentine resistor, a sixth serpentine resistor, a seventh serpentine resistor, and an eighth serpentine resistor. The serpentine resistors comprise anisotropic magneto-resistive material that changes resistance in response to a change in an applied magnetic field. The sensor also includes a surrounding of anisotropic magneto-resistive material disposed in substantially a same plane as the serpentine resistors, enclosing the serpentine resistors, and electrically isolated from the serpentine resistors. The first Wheatstone bridge, the second Wheatstone bridge, and the surrounding of anisotropic magneto-resistive material are part of a sensor die.
    Type: Application
    Filed: July 21, 2017
    Publication date: January 24, 2019
    Inventors: Dok Won LEE, Erika Lynn MAZOTTI, William David FRENCH
  • Patent number: 10184991
    Abstract: A fluxgate device that includes a first magnetic core and a second magnetic core. The first magnetic core has a first magnetized direction that deviates from a first sense direction by more than 0 degree and less than 90 degrees. The second magnetic core is arranged orthogonally to the first magnetic core. The second magnetic core has a second magnetized direction that deviates from a second sense direction by more than 0 degree and less than 90 degrees.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 22, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Dok Won Lee, William David French, Ricky Alan Jackson, Ann Margaret Gabrys
  • Publication number: 20190005220
    Abstract: A wearable device includes one or more biometric sensors, each of the one or more biometric sensors gathering biological data from a wearer of the wearable device, the wearable device further having a computer processor for receiving the biological data from the one or more biometric sensors and generating biometric information based on the biological data and according one or more biometrical algorithms, the biometric information including validation information to validate the wearer as a source of the biological data gathered by each of the one or more sensors, the biometric information further including sleep information to provide a sleep profile of the wearer.
    Type: Application
    Filed: August 20, 2018
    Publication date: January 3, 2019
    Inventors: Dominic Munafo, David French, Bretton Hevener, William Hevener, Thinh Nguyen
  • Patent number: 10147537
    Abstract: An integrated fluxgate device, which includes a magnetic core, an excitation coil, and a sense coil. The magnetic core has a longitudinal edge and a terminal edge. The excitation coil coils around the longitudinal edge of the magnetic core, and the excitation coil has a first number of excitation coil members within a proximity of the terminal edge. The sense coil coils around the longitudinal edge of the magnetic core, and the sense coil has a second number of sense coil members within the proximity of the terminal edge. For reducing fluxgate noise, the second number of sense coil members may be less than the first number of excitation coil members within the proximity of the terminal edge.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: December 4, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Dok Won Lee, Sudtida Lavangkul, Erika Lynn Mazotti, William David French
  • Patent number: 10055565
    Abstract: A wearable device includes one or more biometric sensors, each of the one or more biometric sensors gathering biological data from a wearer of the wearable device, the wearable device further having a computer processor for receiving the biological data from the one or more biometric sensors and generating biometric information based on the biological data and according one or more biometrical algorithms, the biometric information including validation information to validate the wearer as a source of the biological data gathered by each of the one or more sensors, the biometric information further including sleep information to provide a sleep profile of the wearer.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 21, 2018
    Assignee: SLEEP DATA SERVICES, LLC
    Inventors: Dominic Munafo, David French, Bretton Hevener, William Hevener, Thinh Nguyen
  • Patent number: 10048841
    Abstract: An apparatus, method, and program product are disclosed for collaborative project management. One apparatus includes a selection module that receives a selection by a local user of an information handling device to display an application screen of a remote user of multiple remote users. The application screen of the remote user displays a project used by the multiple remote users in a collaborative environment. The apparatus includes a display module that displays on the information handling device the application screen of the remote user. The application screen of the remote user is updated immediately as modifications to the project are made.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 14, 2018
    Assignee: Brigham Young University
    Inventors: Brett Stone, Philip Cox, David French, Ammon Hepworth, Charles Gregory Jensen, Walter Edward Red
  • Publication number: 20180202837
    Abstract: An integrated AMR angular sensor includes a first sensor resistor and a second sensor resistor. The first sensor resistor and the second sensor resistor each has a plurality of magnetoresistive segments containing magnetoresistive material that are electrically coupled in series. The magnetoresistive segments of each sensor resistor are parallel/anti-parallel to each other. The magnetoresistive segments of the second sensor resistor are perpendicular to the magnetoresistive segments of the first sensor resistor. The first magnetoresistive segments are divided into a first group and a second group, which are disposed in a balanced distribution relative to a sensor central point of the integrated AMR angular sensor. Similarly, the second magnetoresistive segments are divided into a first group and a second group, which are disposed in a balanced distribution relative to the sensor central point.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 19, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: William David French, Dok Won Lee
  • Publication number: 20180130849
    Abstract: Disclosed examples provide wafer-level integration of magnetoresistive sensors and Hall-effect sensors in a single integrated circuit, in which one or more vertical and/or horizontal Hall sensors are formed on or in a substrate along with transistors and other circuitry, and a magnetoresistive sensor circuit is formed in the IC metallization structure.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Dok Won Lee, William David French, Keith Ryan Green