Patents by Inventor David H. Wells

David H. Wells has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117744
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 25, 2015
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Publication number: 20150235699
    Abstract: Memory devices comprise a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also disclosed.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Inventors: David H. Wells, Jun Liu
  • Patent number: 9099309
    Abstract: Disclosed are methods and resulting structures which provide an opening for epitaxial growth, the opening having an associated projection for reducing the size of the contact area on a substrate at which growth begins. During growth, the epitaxial material grows vertically from the contact area and laterally over the projection. The projection provides a stress relaxation region for the lateral growth to reduce dislocation and stacking faults at the side edges of the grown epitaxial material.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 4, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Song Guo, Yushi Hu, Roy Meade, Sanh D. Tang, Michael P. Violette, David H. Wells
  • Patent number: 9093368
    Abstract: A nonvolatile memory cell includes first and second electrodes. Programmable material and a select device are received in series between and with the first and second electrodes. Current conductive material is in series between and with the programmable material and the select device. An array of vertically stacked tiers of such nonvolatile memory cells is disclosed. Methods of forming arrays of nonvolatile memory cells are disclosed.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: July 28, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Zengtao T. Liu, David H. Wells
  • Publication number: 20150206761
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.
    Type: Application
    Filed: April 1, 2015
    Publication date: July 23, 2015
    Inventors: Janos Fucsko, David H. Wells, Patrick M. Flynn, Whonchee Lee
  • Patent number: 9082829
    Abstract: Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed patterns of crossing elongate features with pillars at the intersections. Spacers are simultaneously applied to sidewalls of both sets of crossing lines to produce a pitch-doubled grid pattern. The pillars facilitate rows of spacers bridging columns of spacers.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: July 14, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventor: David H. Wells
  • Patent number: 9059078
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 16, 2015
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Patent number: 9040424
    Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 26, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
  • Publication number: 20150140803
    Abstract: Methods of forming semiconductor structures that include bodies of a semiconductor material disposed between rails of a dielectric material are disclosed. Such methods may include filling a plurality of trenches in a substrate with a dielectric material and removing portions of the substrate between the dielectric material to form a plurality of openings. In some embodiments, portions of the substrate may be undercut to form a continuous void underlying the bodies and the continuous void may be filled with a conductive material. In other embodiments, portions of the substrate exposed within the openings may be converted to a silicide material to form a conductive material under the bodies. For example, the conductive material may be used as a conductive line to electrically interconnect memory device components. Semiconductor structures and devices formed by such methods are also disclosed.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventors: David H. Wells, Gurtej S. Sandhu
  • Publication number: 20150137214
    Abstract: Semiconductor structures that include bodies of a semiconductor material spaced apart from an underlying substrate. The bodies may be physically separated from the substrate by at least one of a dielectric material, an open volume and a conductive material. The bodies may be electrically coupled by one or more conductive structures, which may be used as an interconnect structure to electrically couple components of memory devices. By providing isolation between the bodies, the semiconductor structure provides the properties of a conventional SOI substrate (e.g., high speed, low power, increased device density and isolation) while substantially reducing fabrication acts and costs associated with such SOI substrates. Additionally, the semiconductor structures of the present disclosure provide reduced parasitic coupling and current leakage due to the isolation of the bodies by the intervening dielectric material.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 21, 2015
    Inventors: Sanh D. Tang, David H. Wells, Tuman E. Allen
  • Patent number: 9025370
    Abstract: Memory devices comprise a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also disclosed.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Jun Liu
  • Patent number: 9023714
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 5, 2015
    Assignee: Micron Technology, Inc.
    Inventor: David H. Wells
  • Publication number: 20150108600
    Abstract: Disclosed are methods and resulting structures which provide an opening for epitaxial growth, the opening having an associated projection for reducing the size of the contact area on a substrate at which growth begins. During growth, the epitaxial material grows vertically from the contact area and laterally over the projection. The projection provides a stress relaxation region for the lateral growth to reduce dislocation and stacking faults at the side edges of the grown epitaxial material.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Song Guo, Yushi Hu, Roy Meade, Sanh D. Tang, Michael P. Violette, David H. Wells
  • Patent number: 9006859
    Abstract: Methods of forming semiconductor structures that include bodies of a semiconductor material disposed between rails of a dielectric material are disclosed. Such methods may include filling a plurality of trenches in a substrate with a dielectric material and removing portions of the substrate between the dielectric material to form a plurality of openings. In some embodiments, portions of the substrate may be undercut to form a continuous void underlying the bodies and the continuous void may be filled with a conductive material. In other embodiments, portions of the substrate exposed within the openings may be converted to a silicide material to form a conductive material under the bodies. For example, the conductive material may be used as a conductive line to electrically interconnect memory device components. Semiconductor structures and devices formed by such methods are also disclosed.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Gurtej S. Sandhu
  • Patent number: 8987108
    Abstract: Semiconductor structures that include bodies of a semiconductor material spaced apart from an underlying substrate. The bodies may be physically separated from the substrate by at least one of a dielectric material, an open volume and a conductive material. The bodies may be electrically coupled by one or more conductive structures, which may be used as an interconnect structure to electrically couple components of memory devices. By providing isolation between the bodies, the semiconductor structure provides the properties of a conventional SOI substrate (e.g., high speed, low power, increased device density and isolation) while substantially reducing fabrication acts and costs associated with such SOI substrates. Additionally, the semiconductor structures of the present disclosure provide reduced parasitic coupling and current leakage due to the isolation of the bodies by the intervening dielectric material.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, David H. Wells, Tuman E. Allen
  • Publication number: 20150054168
    Abstract: Single spacer processes for multiplying pitch by a factor greater than two are provided. In one embodiment, n, where n?2, tiers of stacked mandrels are formed over a substrate, each of the n tiers comprising a plurality of mandrels substantially parallel to one another. Mandrels at tier n are over and parallel to mandrels at tier n?1, and the distance between adjoining mandrels at tier n is greater than the distance between adjoining mandrels at tier n?1. Spacers are simultaneously formed on sidewalls of the mandrels. Exposed portions of the mandrels are etched away and a pattern of lines defined by the spacers is transferred to the substrate.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: David H. Wells, Mirzafer K. Abatchev
  • Patent number: 8962431
    Abstract: A method of forming metal silicide-comprising material includes forming a substrate which includes a first stack having second metal over first metal over silicon and a second stack having second metal over silicon. The first and second metals are of different compositions. The substrate is subjected to conditions which react the second metal with the silicon in the second stack to form metal silicide-comprising material from the second stack. The first metal between the second metal and the silicon in the first stack precludes formation of a silicide comprising the second metal and silicon from the first stack. After forming the metal silicide-comprising material, the first metal, the second metal and the metal silicide-comprising material are subjected to an etching chemistry that etches at least some remaining of the first and second metals from the substrate selectively relative to the metal silicide-comprising material.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: February 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, John Mark Meldrim, Rita J. Klein
  • Patent number: 8883644
    Abstract: Single spacer processes for multiplying pitch by a factor greater than two are provided. In one embodiment, n, where n?2, tiers of stacked mandrels are formed over a substrate, each of the n tiers comprising a plurality of mandrels substantially parallel to one another. Mandrels at tier n are over and parallel to mandrels at tier n?1, and the distance between adjoining mandrels at tier n is greater than the distance between adjoining mandrels at tier n?1. Spacers are simultaneously formed on sidewalls of the mandrels. Exposed portions of the mandrels are etched away and a pattern of lines defined by the spacers is transferred to the substrate.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, Mirzafer K. Abatchev
  • Publication number: 20140326941
    Abstract: Resistive memory and methods of processing resistive memory are described herein. One or more method embodiments of processing resistive memory include forming a resistive memory cell material on an electrode having an access device contact, and forming a heater electrode on the resistive memory cell material after forming the resistive memory cell material on the electrode such that the heater electrode is self-aligned to the resistive memory cell material.
    Type: Application
    Filed: June 12, 2014
    Publication date: November 6, 2014
    Inventor: David H. Wells
  • Patent number: 8871588
    Abstract: A method of fabricating a memory cell comprises forming a plurality of doped semiconductor layers on a carrier substrate. The method further comprises forming a plurality of digit lines separated by an insulating material. The digit lines are arrayed over the doped semiconductor layers. The method further comprises etching a plurality of trenches into the doped semiconductor layers. The method further comprises depositing an insulating material into the plurality of trenches to form a plurality of electrically isolated transistor pillars. The method further comprises bonding at least a portion of the structure formed on the carrier substrate to a host substrate. The method further comprises separating the carrier substrate from the host substrate.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: David H. Wells, H. Montgomery Manning