Patents by Inventor David Horak

David Horak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060103818
    Abstract: A method and apparatus for reduction and prevention of residue formation and removal of residues formed in an immersion lithography tool. The apparatus including incorporation of a cleaning mechanism within the immersion head of an immersion lithographic system or including a cleaning mechanism in a cleaning station of an immersion lithographic system.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven Holmes, Mark Hakey, Toshiharu Furukawa, David Horak
  • Publication number: 20060103830
    Abstract: An apparatus for holding a wafer and a method for immersion lithography. The apparatus, including a wafer chuck having a central circular vacuum platen, an outer region, and a circular groove centered on the vacuum platen, a top surface of the vacuum platen recessed below a top surface of the outer region and a bottom surface of the groove recessed below the top surface of the vacuum platen; one or more suction ports in the bottom surface of the groove; and a hollow toroidal inflatable and deflatable bladder positioned within the groove.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven Holmes, Toshiharu Furukawa, Mark Hakey, Daniel Corliss, David Horak, Charles Koburger
  • Publication number: 20060096951
    Abstract: An apparatus is provided which includes a holder operable to retain an article for interaction with a medium. The article has a first portion and a second portion, and the medium is such that the interaction alters the article in a temperature-dependent manner. First and second temperature-modifying elements are maintained by the holder adjacent to the first and second portions of the article to facilitate heat transfer between each temperature-modifying element and the adjacent portion of the article. The apparatus also includes a controller which is operable to maintain the first and second temperature-modifying elements at first and second independently controlled temperatures, respectively, such that the rate of interaction of the medium with each portion of the article is variable in a manner dependent upon the temperature of the adjacent temperature-modifying element.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 11, 2006
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, TOKYO ELECTRON LIMITED
    Inventors: Wesley Natzle, William Chu, David Horak, Arthur LaFlamme, Tomoyasu Masayuki, Akihisa Sekiguchi
  • Patent number: 7041600
    Abstract: A method of planarization allows for the use of chemical mechanical polishing (CMP) in starting structures having films not generally suitable for CMP processes. Two material layers are formed over a starting structure, and the upper layer is planarized in a CMP process. A nonselective etch is then used to transfer the planar topography to the lower level.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: May 9, 2006
    Assignee: International Business Machines Corporation
    Inventors: Omer Dokumaci, Bruce Doris, David Horak, Fen F. Jamin
  • Publication number: 20060073394
    Abstract: A combined wide-image and loop-cutter pattern is provided for both cutting and forming a wide-image section to a hard mask on a substrate formed by sidewall imaging techniques in a reduced number of photolithographic steps. A single mask is formed which provides a wide mask section while additionally providing a mask to protect the critical edges of an underlying hard mask during hard mask etching. After the hard mask is cut into sections, the protective portions of the follow-on mask are removed to expose the critical edges of the underlying hard mask while maintaining shapes necessary for defining wide-image sections. Thus, the hard mask cutting, hard mask critical edge protecting, and large area mask may be formed in a reduced number of steps.
    Type: Application
    Filed: October 4, 2004
    Publication date: April 6, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20060073682
    Abstract: A low-k dielectric material for use in the manufacture of semiconductor devices, semiconductor structures using the low-k dielectric material, and methods of forming such dielectric materials and fabricating such structures. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.
    Type: Application
    Filed: October 4, 2004
    Publication date: April 6, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20060060562
    Abstract: A method of patterning which provides images substantially smaller than that possible by lithographic techniques is provided. In the method of the invention, a substrate has a memory layer and a sacrificial layer formed thereon. An image is patterned onto the memory layer by protecting an edge during an etching step using chemical oxide removal (COR) processes, for example. Another edge is memorized in the layer. The sacrificial layer is removed to expose another memorized edge, which is used to define a pattern in an underlying layer.
    Type: Application
    Filed: September 20, 2004
    Publication date: March 23, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit, James Slinkman
  • Publication number: 20060024940
    Abstract: A borderless contact structure and method of fabricating the structure, the method including: (a) providing a substrate; (b) forming a polysilicon line on the substrate, the polysilicon line having sidewalls; (c) forming an insulating sidewall layer on the sidewalls of the polysilicon line; (d) removing a portion of the polysilicon line and a corresponding portion of the insulating sidewall layer in a contact region of the polysilicon line; and (e) forming a silicide layer on the sidewall of the polysilicon line in the contact region. Also an SRAM cell using the borderless contact structure and a method of fabricating the SRAM cell.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Applicant: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, David Horak, Charles Koburger
  • Publication number: 20060022221
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 2, 2006
    Applicant: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell
  • Publication number: 20060011990
    Abstract: Semiconductor fabrication methods and structures, devices and integrated circuits characterized by enhanced operating performance. The structures generally include first and second source/drain regions formed in a body of a semiconductor material and a channel region defined in the body between the first and second source/drain regions. Disposed in at least one of the first and second source/drain regions are a plurality of plugs each formed from a volume-expanded material that transfers compressive stress to the channel region. The compressively strained channel region may be useful, for example, for improving the operating performance of p-channel field effect transistors (PFET's).
    Type: Application
    Filed: July 15, 2004
    Publication date: January 19, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20060007453
    Abstract: A system, method and program product for correcting a deviation of a dimension of a feature from a target in a semiconductor process, are disclosed. The invention determines an origin of a deviation in a feature dimension from a target dimension regardless of whether it is based on processing or metrology. Adjustments for wafer processing variation of previous process tools can be fed forward, and adjustments for the process and/or integrated metrology tools may be fed back automatically during the processing of semiconductor wafers. The invention implements process reference wafers to determine the origin in one mode, and measurement reference wafers to determine the origin of deviations in another mode.
    Type: Application
    Filed: July 12, 2004
    Publication date: January 12, 2006
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, TOKYO ELECTRON LIMITED
    Inventors: David Horak, Wesley Natzle, Merritt Funk, Kevin Lally, Daniel Prager
  • Publication number: 20060008927
    Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
    Type: Application
    Filed: September 7, 2005
    Publication date: January 12, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Mark Masters, Peter Mitchell
  • Publication number: 20050286293
    Abstract: A gain cell for a memory circuit, a memory circuit formed from multiple gain cells, and methods of fabricating such gain cells and memory circuits. The memory gain cell includes a storage capacitor, a write device electrically coupled with the storage capacitor for charging and discharging the storage capacitor to define a stored electrical charge, and a read device. The read device includes one or more semiconducting carbon nanotubes each electrically coupled between a source and drain. A portion of each semiconducting carbon nanotube is gated by the read gate and the storage capacitor to thereby regulate a current flowing through each semiconducting carbon nanotube from the source to the drain. The current is proportional to the electrical charge stored by the storage capacitor. In certain embodiments, the memory gain cell may include multiple storage capacitors.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 29, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Mark Masters, Peter Mitchell
  • Publication number: 20050266627
    Abstract: Vertical field effect transistors having a channel region defined by at least one semiconducting nanotube and methods for fabricating such vertical field effect transistors by chemical vapor deposition using a spacer-defined channel. Each nanotube is grown by chemical vapor deposition catalyzed by a catalyst pad positioned at the base of a high-aspect-ratio passage defined between a spacer and a gate electrode. Each nanotube grows in the passage with a vertical orientation constrained by the confining presence of the spacer. A gap may be provided in the base of the spacer remote from the mouth of the passage. Reactants flowing through the gap to the catalyst pad participate in nanotube growth.
    Type: Application
    Filed: July 13, 2005
    Publication date: December 1, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Peter Mitchell, Larry Nesbit
  • Publication number: 20050245008
    Abstract: A method for forming a gate structure for a semiconductor device includes defining a conductive sacrificial structure on a substrate, forming a reacted metal film on sidewalls of the conductive sacrificial structure, and removing unreacted portions of the conductive sacrificial structure.
    Type: Application
    Filed: April 28, 2004
    Publication date: November 3, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20050242378
    Abstract: A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.
    Type: Application
    Filed: July 6, 2005
    Publication date: November 3, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Larry Nesbit
  • Publication number: 20050213061
    Abstract: A photolithographic apparatus, system and method employing an improved refractive medium. The photolithographic apparatus may be used in an immersion lithography system for projecting light onto a workpiece such as a semiconductor wafer. In one embodiment, the photolithographic apparatus includes a container containing a transparent fluid. The fluid container is positioned between a lens element and the wafer. The container is further characterized as having a substantially flexible and transparent bottom membrane contacting an upper surface of the wafer and overlapping at least one side edge of the wafer such that a fluid filled skirt is formed extending beyond the edges of the wafer.
    Type: Application
    Filed: March 25, 2004
    Publication date: September 29, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark Hakey, David Horak, Charles Koburger, Peter Mitchell
  • Publication number: 20050202322
    Abstract: Methods for fabricating alternating phase shift masks or reticles used in semiconductor optical lithography systems. The methods generally include forming a layer of phase shift mask material on a handle substrate and patterning the layer to define recessed phase shift windows. The patterned layer is transferred from the handle wafer to a mask blank. The depth of the phase shift windows is determined by the thickness of the layer of phase shift mask material and is independent of the patterning process. In particular, the depth of the phase shift windows is not dependent upon the etch rate uniformity of an etch process across a surface of a mask blank.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit
  • Publication number: 20050189655
    Abstract: Conductive paths in an integrated circuit are formed using multiple undifferentiated carbon nanotubes embedded in a conductive metal, which is preferably copper. Preferably, conductive paths include vias running between conductive layers. Preferably, composite vias are formed by forming a metal catalyst pad on a conductor at the via site, depositing and etching a dielectric layer to form a cavity, growing substantially parallel carbon nanotubes on the catalyst in the cavity, and filling the remaining voids in the cavity with copper. The next conductive layer is then formed over the via hole.
    Type: Application
    Filed: February 26, 2004
    Publication date: September 1, 2005
    Applicant: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Mark Masters, Peter Mitchell, Stanislav Polonsky
  • Publication number: 20050179029
    Abstract: A method for forming carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, and device structures and arrays of device structures formed by the methods. The methods include forming a stacked structure including a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The completed device structure includes a gate electrode with a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 18, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit