Patents by Inventor David J. Kunst

David J. Kunst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9514262
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 6, 2016
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Publication number: 20150205902
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 23, 2015
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 9003340
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 7, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8341582
    Abstract: A programmable analog tile integrated circuit configuration tool communicates a power management control characteristic query soliciting control requirement information for a novel Power Management Integrated Circuit (PMIC) tile in a Multi-Tile Power Management Integrated Circuit (MTPMIC). The configuration tool receives a user response to the query indicating control requirements across a network. The PMIC tile includes configuration registers. Configuration information bit values stored in the configuration registers control the operational characteristics of the functional circuitry of the tile. The configuration registers of each novel PMIC tile are accessible at pre-defined addresses on a standardized bus of the MTPMIC. In response to the user response, the configuration tool generates appropriate tile configuration information for loading the configuration registers such that the PMIC tile within the MTPMIC is programmed to satisfy the user's control requirements.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 25, 2012
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8225260
    Abstract: A programmable analog tile integrated circuit placement tool allows a user to manipulate a graphical representation of a first power management integrated circuit (PMIC) tile with respect to a graphical representation of a second PMIC tile in a proposed Multi-Tile Power Management Integrated Circuit (MTPMIC). The novel PMIC tiles have pre-defined physical structures including a bus portion and a memory structure for storing configuration information for configuring the tile. When appropriately placed in a MTPMIC, the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. A remote user with minimal training in analog circuit design may command the placement of individual tiles in a proposed MTPMIC layout. Upon receiving a user response indicating satisfaction with the placement of PMIC tiles, the tool quickly and automatically generates physical layout data suitable for fabrication of the MTPMIC.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 17, 2012
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8219956
    Abstract: An Analog Tile Selection, Placement, Configuration and Programming (ATSPCP) tool communicates a power management characteristic query over a network. The query is displayed to a user on a webpage. The query is a solicitation for desired characteristics of a Power Management Integrated Circuit (PMIC). After receiving user requirements in a response to the query, the tool selects a number of power management integrated circuit tiles having pre-defined physical structures. The pre-defined structure of each tile includes a bus portion and a memory structure for storing configuring information for the tile. When combined in a Multi-Tile Power Management Integrated Circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC that meets the user requirements. The ATSPCP tool combines the physical layout data of each selected PMIC tile to form composite physical layout data for the overall MTPMIC.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 10, 2012
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8161450
    Abstract: An integrated circuit includes a buck converter controller, a PFET, an NFET that is coupled in common drain configuration to the PFET, a first microbump that is connected to the source of the PFET, a second microbump that is connected to the source of the NFET, a third microbump that is connected to the common drain node, a fourth microbump that is connected to a feedback input lead of the controller, and a plurality of other microbumps. The other microbumps are utilized to supply signals to and/or to conduct signals from the controller. A respective one of the four microbumps is disposed to occupy a respective one of the four corners of a square pattern. The other microbumps are disposed in a regular grid along with the four microbumps, but none of the other microbumps is disposed between any two of the four microbumps.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: April 17, 2012
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David J. Kunst
  • Patent number: 8149191
    Abstract: A system involves LED strings and programmable current source circuits (CSC). An LED current flows through each LED string. Each LED current is controlled by an associated programmable CSC. In one embodiment, the CSCs form a chain. A first CSC uses a reference current for calibration, and thereafter supplies the reference current to the next CSC. When the next CSC detects the reference current, it uses the reference current for calibration. CSCs are calibrated one by one down the chain. In a second embodiment, each CSC can receive the reference current from a common conductor. If the common conductor is detected to be available, then the CSC uses the reference current for calibration. When the conductor is in use, the other CSCs detect the conductor as unavailable and do not attempt to self-calibrate. The CSCs use the reference current one by one, but in an order that changes over time.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: April 3, 2012
    Assignee: Active-Semi, Inc.
    Inventors: David J. Kunst, Steven Huynh, Richard L. Gray
  • Patent number: 8080988
    Abstract: A driver circuit (for example, in a switching power supply or in a Class-D switching amplifier) drives a gate of a switch during a transition with a low output impedance during an initial period and then for the remainder of the transition drives the gate with a midrange output impedance. The switch in turn switches current flow through an inductor. The driver circuit includes a “Drive Node Voltage Dependent Impedance Circuit” (DNVDIC) that couples the gate to a supply voltage node. In one embodiment, there are two resistive current paths through the DNVDIC. A non-linear device in the first current path switches from having a small to a large impedance when a voltage drop across the device falls below a threshold voltage. The resulting increase in impedance of the first current path decreases voltage edge rates and reduces noise, whereas the low initial impedance reduces transition power losses.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: December 20, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Gary Michael Hurtz, Trinh Khac Hue, David J. Kunst
  • Patent number: 8079007
    Abstract: A programmable analog tile integrated circuit programming tool communicates a power management control characteristic query soliciting control requirement information for a novel power management integrated circuit (PMIC) tile in a multi-tile power management integrated circuit (MTPMIC). The programming tool receives a user response to the query indicating control requirements across a network. The novel PMIC tiles have a pre-defined physical structure including all memory structures required for configuration of each tile and a bus portion. When combined in a multi-tile power management integrated circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. The memory structure of each tile is individually addressable via the standardized bus. Thus, in response to control requirements, the programming tool programs a PMIC tile that is part of a MTPMIC to meet the control requirements.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 13, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8040699
    Abstract: A low-cost integrated circuit is used as a secondary side constant voltage and constant current controller. The integrated circuit has four terminals and two amplifier circuits. A first amplifier circuit is used to sense a voltage on a FB terminal and in response to cause a first current to flow through an OPTO terminal. A second amplifier circuit is used to sense a voltage between a SENSE terminal and a SOURCE terminal and in response to cause a second current to flow through the same OPTO terminal. The FB terminal is used for output voltage feedback and is also used to supply power onto the integrated circuit. The SOURCE terminal is used for output current feedback and is also used as power supply return for the integrated circuit. The cost of the integrated circuit is reduced by having only four terminals.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: October 18, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Zhibo Tao, David J. Kunst, Matthew Grant
  • Patent number: 8014217
    Abstract: A primary-side regulation (PSR) controller integrated circuit includes a PSR CC/CV controller and a non-volatile shift register. An assembled power supply that includes the integrated circuit is in-circuit tested to determine errors in power supply output voltage and/or current. Programming information is determined and shifted into the shift register. During programming, the power supply regulates to a different output voltage, and the different voltage is used for shift register programming. After programming, the power supply operates in a normal mode so that the output voltage and current are within specification. The voltage and current to which the power supply regulates are set by some of the bits of the programming information.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: September 6, 2011
    Assignee: Active-Semi, Inc.
    Inventor: David J. Kunst
  • Patent number: 7978558
    Abstract: A primary-side regulation (PSR) controller integrated circuit includes a PSR CC/CV controller and a non-volatile shift register. An assembled power supply that includes the integrated circuit is in-circuit tested to determine errors in power supply output voltage and/or current. Programming information is determined and shifted into the shift register. During programming, the power supply regulates to a different output voltage, and the different voltage is used for shift register programming. After programming, the power supply operates in a normal mode so that the output voltage and current are within specification. The voltage and current to which the power supply regulates are set by some of the bits of the programming information.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 12, 2011
    Assignee: Active-Semi, Inc.
    Inventor: David J. Kunst
  • Patent number: 7869275
    Abstract: An integrated circuit includes a plurality of tiles. One tile is a master tile. Other tiles contain writable registers of memory structures. Information for configuring circuitry of the tile is stored in the register in the tile. An individual one of the registers can be written via the master tile. Each memory structure of a register includes a non-volatile floating gate cell (that stores the configuration information) as well as a volatile cell. All transistors have the same gate insulator thickness. Although a programming pulse signal is applied to all memory structures, the state of the non-volatile cell of a memory structure is only changed if the state stored by the associated non-volatile cell differs from the state stored by the volatile cell. Floating gates are automatically refreshed by the programming pulse signal. By storing configuration information in each tile, inefficiencies associated with using blocks of non-volatile memory are avoided.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Matthew A. Grant, David J. Kunst, Steven Huynh
  • Patent number: 7788608
    Abstract: An integrated circuit includes a buck converter controller, a PFET, an NFET that is coupled in common drain configuration to the PFET, a first microbump that is connected to the source of the PFET, a second microbump that is connected to the source of the NFET, a third microbump that is connected to the common drain node, a fourth microbump that is connected to a feedback input lead of the controller, and a plurality of other microbumps. The other microbumps are utilized to supply signals to and/or to conduct signals from the controller. A respective one of the four microbumps is disposed to occupy a respective one of the four corners of a square pattern. The other microbumps are disposed in a regular grid along with the four microbumps, but none of the other microbumps is disposed between any two of the four microbumps.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 31, 2010
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David J. Kunst
  • Publication number: 20100199254
    Abstract: A programmable analog tile integrated circuit programming tool communicates a power management control characteristic query soliciting control requirement information for a novel power management integrated circuit (PMIC) tile in a multi-tile power management integrated circuit (MTPMIC). The programming tool receives a user response to the query indicating control requirements across a network. The novel PMIC tiles have a pre-defined physical structure including all memory structures required for configuration of each tile and a bus portion. When combined in a multi-tile power management integrated circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. The memory structure of each tile is individually addressable via the standardized bus. Thus, in response to control requirements, the programming tool programs a PMIC tile that is part of a MTPMIC to meet the control requirements.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Publication number: 20100199249
    Abstract: A programmable analog tile integrated circuit placement tool allows a user to manipulate a graphical representation of a first power management integrated circuit (PMIC) tile with respect to a graphical representation of a second PMIC tile in a proposed Multi-Tile Power Management Integrated Circuit (MTPMIC). The novel PMIC tiles have pre-defined physical structures including a bus portion and a memory structure for storing configuration information for configuring the tile. When appropriately placed in a MTPMIC, the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. A remote user with minimal training in analog circuit design may command the placement of individual tiles in a proposed MTPMIC layout. Upon receiving a user response indicating satisfaction with the placement of PMIC tiles, the tool quickly and automatically generates physical layout data suitable for fabrication of the MTPMIC.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Publication number: 20100199247
    Abstract: A programmable analog tile integrated circuit is configured over a standardized bus by communicating tile configuration information from a first integrated circuit tile, through a second integrated circuit tile, to a third integrated circuit tile. Each of the three integrated circuit tiles is part of an integrated circuit. The standardized bus is formed when the tiles are placed adjacent one another. Data bus and control signal conductors of the adjacent tiles line up and interconnect such that each signal conductor is electrically connected to every tile. Tile configuration information may be written to a selected register identified by an address in any selected one of the tiles using the data bus and control lines, regardless of the relative physical locations of the tile sending and the tile receiving the information. Thus, tile configuration information may pass from one tile to another tile, through any number of intermediate tiles.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Publication number: 20100199246
    Abstract: A programmable analog tile integrated circuit configuration tool communicates a power management control characteristic query soliciting control requirement information for a novel Power Management Integrated Circuit (PMIC) tile in a Multi-Tile Power Management Integrated Circuit (MTPMIC). The configuration tool receives a user response to the query indicating control requirements across a network. The PMIC tile includes configuration registers. Configuration information bit values stored in the configuration registers control the operational characteristics of the functional circuitry of the tile. The configuration registers of each novel PMIC tile are accessible at pre-defined addresses on a standardized bus of the MTPMIC. In response to the user response, the configuration tool generates appropriate tile configuration information for loading the configuration registers such that the PMIC tile within the MTPMIC is programmed to satisfy the user's control requirements.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Publication number: 20100199250
    Abstract: An Analog Tile Selection, Placement, Configuration and Programming (ATSPCP) tool communicates a power management characteristic query over a network. The query is displayed to a user on a webpage. The query is a solicitation for desired characteristics of a Power Management Integrated Circuit (PMIC). After receiving user requirements in a response to the query, the tool selects a number of power management integrated circuit tiles having pre-defined physical structures. The pre-defined structure of each tile includes a bus portion and a memory structure for storing configuring information for the tile. When combined in a Multi-Tile Power Management Integrated Circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC that meets the user requirements. The ATSPCP tool combines the physical layout data of each selected PMIC tile to form composite physical layout data for the overall MTPMIC.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig