Patents by Inventor David J. Miller

David J. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210330231
    Abstract: In one example, the disclosure relates to a catheter system comprising an elongated body defining a lumen where the elongated body comprises a proximal portion and a distal portion. An anchoring member may be positioned on the proximal portion of the elongated body. The system further comprising at least one sensor configured to be coupled to the elongated body where the at least one sensor may be configured to sense one or more parameters of a fluid within the lumen of the elongate body. Memory configured to be coupled to the elongated body where the memory may be configured to store sensor calibration information. The system configured to calibrate the at least one sensor based on the sensor calibration information stored by the memory.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 28, 2021
    Inventor: David J. Miller
  • Publication number: 20210330934
    Abstract: In one example, the disclosure relates to a system comprising an elongated body defining a lumen where the elongated body comprises a proximal portion and a distal portion. An anchoring member positioned on the proximal portion of the elongated body. The system further comprising a fluorescence material configured to be located within the lumen with a fluid in the lumen. A light source configured to emit light to expose the fluorescence material to the emitted light where the fluorescence material within the fluid is configured to fluoresce when exposed to the light in the lumen. The system further comprising a light detector configured to detect the fluorescence of the fluorescence material.
    Type: Application
    Filed: April 24, 2020
    Publication date: October 28, 2021
    Inventor: David J. Miller
  • Patent number: 11129641
    Abstract: Mechanical resection instruments with outflow control. At least some of the example embodiments are methods including: receiving an indication of a first rotational mode of a mechanical resection instrument coupled to a motor of a motor drive unit (MDU); controlling rotation of the rotating portion of the mechanical resection instrument by controlling the motor, the controlling in conformance with the indication of the first rotational mode; setting a first outflow rate through the mechanical resection instrument based on the indication of the first rotational mode; drawing fluid through the mechanical resection instrument at the first outflow rate during a surgical procedure, the drawing by way of the pump controlled by the controller; sensing a parameter indicative of resection by the mechanical resection instrument; and changing a rate at which fluid is drawn through the mechanical resection instrument, the changing relative to the first outflow rate.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: September 28, 2021
    Assignee: SMITH & NEPHEW, INC.
    Inventors: David J. Miller, Jean Woloszko, Jonathan L. Gaspredes, Rajitha Aluru
  • Patent number: 11099076
    Abstract: A thermo-mechanical resonating microbolometer has a graphene absorber suspended above a metallic silicon substrate to form a mechanical resonator. Microelectronic circuitry electrically connected to the graphene resonator and the metallic silicon substrate drives electronically the motion of the graphene absorber. Shifts in the mechanical resonant frequency of the graphene layer due to the absorption of incident radiation is measured electronically or using optical interferometry. A bolometer sensor array may be fabricated using such graphene microbolometer elements.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 24, 2021
    Assignee: University of Oregon
    Inventors: Benjamin J. Alemán, Andrew D. Blaikie, David J. Miller
  • Publication number: 20210251497
    Abstract: A system for detecting strokes includes a sensor device configured to obtain physiological data from a patient, for example brain activity data. The sensor device can include electrodes configured to be disposed at the back of the patient's neck or base of the skull. The electrodes can detect electrical signals corresponding to brain activity in the P3, Pz, and/or P4 brain regions or other brain regions. A computing device communicatively coupled to the sensor device is configured to receive the physiological data and analyze it to indicate whether the patient has suffered a stroke.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 19, 2021
    Inventors: Randal C. Schulhauser, John Wainwright, Eric J. Panken, Jadin C. Jackson, Alejo Chavez Gaxiola, Aaron Gilletti, Eduardo N. Warman, Paul G. Krause, Eric M. Christensen, Patrick W. Kinzie, Julia Slopsema, Avram Scheiner, Brian D. Pederson, David J. Miller
  • Publication number: 20210186427
    Abstract: In some examples, a device includes a catheter insert elongated body defining a body lumen, the catheter insert elongated body being configured to be at least partially inserted to a catheter lumen defined by a catheter without covering a first fluid opening of the catheter and to form a fluidically tight coupling with the catheter, and one or more sensors positioned on the elongated body. At least one of the one or more sensors are configured to sense a substance of interest. The catheter insert elongated body includes a material that is a substantially non-permeable to the substance of interest.
    Type: Application
    Filed: April 3, 2020
    Publication date: June 24, 2021
    Inventor: David J. Miller
  • Publication number: 20210186428
    Abstract: In some examples, a medical device includes an elongated body defining an inner lumen. The medical device further includes an anchoring member and a first sensor at a proximal portion of the elongated body, and a second sensor at a distal portion of the elongated body or distal to a distal end of the elongated body. The second sensor is configured to sense a substance of interest and the elongated body comprises a material that is a substantially non-permeable to the substance of interest.
    Type: Application
    Filed: April 21, 2020
    Publication date: June 24, 2021
    Inventor: David J. Miller
  • Publication number: 20200405379
    Abstract: A method comprising sealing a vessel residing within tissue between jaws of forceps by sensing an amount of tissue held within the forceps, the sensing by passing electrical current through the tissue by way of the forceps. The method comprises heating the tissue using electrical current, the heating such that impedance of the tissue changes at a first predetermined rate, the first predetermined rate selected based on the sensing. The method comprises desiccating the tissue using electrical current, such that the impedance of the tissue changes at a second predetermined rate different than the first predetermined rate. The method comprises ceasing application of the electrical current to the tissue when impedance of the tissue reaches a predetermined value. Sensing the amount of tissue held within the forceps comprises varying electrical current flowing through the tissue through the forceps such that impedance of the tissue changes at a third predetermined rate.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Inventors: Jonathan L. Gaspredes, Robert P. Lathrop, Thomas P. Ryan, David J. Miller, Jean Woloszko, Philip M. Tetzlaff
  • Patent number: 10806506
    Abstract: A method comprising sealing a vessel residing within tissue between jaws of forceps by sensing an amount of tissue held within the forceps, the sensing by passing electrical current through the tissue by way of the forceps. The method comprises heating the tissue using electrical current, the heating such that impedance of the tissue changes at a first predetermined rate, the first predetermined rate selected based on the sensing. The method comprises desiccating the tissue using electrical current, such that the impedance of the tissue changes at a second predetermined rate different than the first predetermined rate. The method comprises ceasing application of the electrical current to the tissue when impedance of the tissue reaches a predetermined value. Sensing the amount of tissue held within the forceps comprises varying electrical current flowing through the tissue through the forceps such that impedance of the tissue changes at a third predetermined rate.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 20, 2020
    Assignee: Smith & Nephew, Inc.
    Inventors: Jonathan L. Gaspredes, Robert P. Lathrop, Thomas P. Ryan, David J. Miller, Jean Woloszko, Philip M. Tetzlaff
  • Publication number: 20200054356
    Abstract: Mechanical resection instruments with outflow control. At least some of the example embodiments are methods including: receiving an indication of a first rotational mode of a mechanical resection instrument coupled to a motor of a motor drive unit (MDU); controlling rotation of the rotating portion of the mechanical resection instrument by controlling the motor, the controlling in conformance with the indication of the first rotational mode; setting a first outflow rate through the mechanical resection instrument based on the indication of the first rotational mode; drawing fluid through the mechanical resection instrument at the first outflow rate during a surgical procedure, the drawing by way of the pump controlled by the controller; sensing a parameter indicative of resection by the mechanical resection instrument; and changing a rate at which fluid is drawn through the mechanical resection instrument, the changing relative to the first outflow rate.
    Type: Application
    Filed: March 14, 2018
    Publication date: February 20, 2020
    Applicant: Smith & Nephew, Inc.
    Inventors: David J. MILLER, Jean WOLOSZKO, Jonathan L. GASPREDES, Rajitha ALURU
  • Publication number: 20190277702
    Abstract: A thermo-mechanical resonating microbolometer has a graphene absorber suspended above a metallic silicon substrate to form a mechanical resonator. Microelectronic circuitry electrically connected to the graphene resonator and the metallic silicon substrate drives electronically the motion of the graphene absorber. Shifts in the mechanical resonant frequency of the graphene layer due to the absorption of incident radiation is measured electronically or using optical interferometry. A bolometer sensor array may be fabricated using such graphene microbolometer elements.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Benjamin J. Alemán, Andrew D. Blaikie, David J. Miller
  • Patent number: 10351620
    Abstract: Antibodies, particularly human antibodies, are disclosed having activity in treatment of demyelinating diseases and diseases of the central nervous system. Neuromodulatory agents are provided comprising a material selected from the group consisting of an antibody capable of binding structures or cells in the central nervous system, a peptide analog, and active fragments, monomers and combinations thereof having one or more of the following characteristics: capable of inducing remyelination; binding to neural tissue; promoting Ca++ signaling with oligodendrocytes; and promoting cellular proliferation of glial cells. Amino acid and DNA sequences of exemplary antibodies are disclosed. Methods are described for treating demyelinating diseases, and diseases of the central nervous system, using polyclonal IgM antibodies and human monoclonal antibodies sHIgm22(LYM 22), sHIgm46(LYM46) ebvHIgM MSI19D10, CB2bG8, AKJR4, CB2iE12, CB2iE7, MSI19E5 and MSI10E10, and active fragments thereof.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: July 16, 2019
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Moses Rodriguez, David J. Miller, Larry R. Pease
  • Publication number: 20190181461
    Abstract: The present disclosure relates membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The membrane-electrode assemblies include a first porous electrode; an ion permeable membrane, having a first major surface and an opposed second major surface; a first discontinuous transport protection layer disposed between the first porous electrode and the first major surface of the ion permeable membrane; and a first adhesive layer in contact with the first porous electrode and at least one of the first discontinuous transport protection layer and the ion permeable membrane. The first adhesive layer is disposed along the perimeter of the membrane-electrode assembly.
    Type: Application
    Filed: August 9, 2017
    Publication date: June 13, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur Sinan Yordem, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Bharat R. Acharya, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20190143010
    Abstract: Fluid management in surgical procedures. At least some of the example embodiments are methods including: pumping surgical fluid through a tube to a surgical site by a fluid controller operating in a first mode, the first mode comprising a first relationship of fluid flow and pressure drop across the tube and cannula, and the first mode comprising a first set of proportional, integral, and differential (PID) parameters; and then pumping surgical fluid through the tube to the surgical site with the fluid controller operating in a second mode, the second mode comprising a second relationship of fluid flow and pressure drop across the tube and cannula, the second relationship different than the first relationship, and the second mode comprising a second set of PID parameters used, the second set of PID parameters different than the first set of PID parameters.
    Type: Application
    Filed: October 22, 2018
    Publication date: May 16, 2019
    Applicant: Smith & Nephew, Inc.
    Inventors: Jonathan L. Gaspredes, Jean Woloszko, Rajitha Aluru, David J. Miller
  • Patent number: 10254269
    Abstract: Various embodiments disclosed relate to methods and apparatus for sampling an oil composition. In various embodiments, the present invention provides a method of sampling one or more components of an oil composition. The method includes placing a fluid into a pressure chamber at a first pressure. The pressure chamber includes an oil composition therein. The oil composition contacts the fluid. The fluid includes at least one of a gas, a liquid, and a supercritical fluid. The method also includes taking a sample of at least one of the fluid and the oil composition from the pressure chamber.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 9, 2019
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: David J. Miller, Steven B. Hawthorne
  • Publication number: 20190097241
    Abstract: The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae?Ap?0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure.
    Type: Application
    Filed: March 15, 2017
    Publication date: March 28, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur S. Yordem, Raymond P. Johnston, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Jimmy M. Le, Blake R. Griffith, Daniel E. Johnson, Bharat R. Acharya, Bradley W. Eaton, Michael D. Romano, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Patent number: 10021853
    Abstract: A novel alfalfa variety designated 54VR10 and seed, plants and plant parts thereof. Methods for producing an alfalfa plant that comprise crossing alfalfa variety 54VR10 with another alfalfa plant. Methods for producing an alfalfa plant containing in its genetic material one or more traits introgressed into 54VR10 through backcross conversion and/or transformation, and to the alfalfa seed, plant and plant part produced thereby. Alfalfa seed, plant or plant part produced by crossing alfalfa variety 54VR10 or a trait conversion of 54VR10 with another alfalfa plant or population. Alfalfa populations derived from alfalfa variety 54VR10, methods for producing other alfalfa populations derived from alfalfa variety 54VR10 and the alfalfa populations and their parts derived by the use of those methods.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 17, 2018
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: David R Mickelson, David J Miller, Debra Kleinheinz Sharpee, Mark A Smith, Lonnie Joseph Voelz
  • Patent number: 9968058
    Abstract: A novel alfalfa variety designated 55VR08 and seed, plants and plant parts thereof. Methods for producing an alfalfa plant that comprise crossing alfalfa variety 55VR08 with another alfalfa plant. Methods for producing an alfalfa plant containing in its genetic material one or more traits introgressed into 55VR08 through backcross conversion and/or transformation, and to the alfalfa seed, plant and plant part produced thereby. Alfalfa seed, plant or plant part produced by crossing alfalfa variety 55VR08 or a trait conversion of 55VR08 with another alfalfa plant or population. Alfalfa populations derived from alfalfa variety 55VR08, methods for producing other alfalfa populations derived from alfalfa variety 55VR08 and the alfalfa populations and their parts derived by the use of those methods.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: May 15, 2018
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: David R Mickelson, David J Miller, Debra Kleinheinz Sharpee, Mark A Smith
  • Patent number: 9943059
    Abstract: A novel alfalfa variety designated 54VR70 and seed, plants and plant parts thereof. Methods for producing an alfalfa plant that comprise crossing alfalfa variety 54VR70 with another alfalfa plant. Methods for producing an alfalfa plant containing in its genetic material one or more traits introgressed into 54VR70 through backcross conversion and/or transformation, and to the alfalfa seed, plant and plant part produced thereby. Alfalfa seed, plant or plant part produced by crossing alfalfa variety 54VR70 or a trait conversion of 54VR70 with another alfalfa plant or population. Alfalfa populations derived from alfalfa variety 54VR70, methods for producing other alfalfa populations derived from alfalfa variety 54VR70 and the alfalfa populations and their parts derived by the use of those methods.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: April 17, 2018
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: Suresh Bhamidimarri, David J. Miller, Mark A Smith, Lonnie Joseph Voelz
  • Publication number: 20180086821
    Abstract: Antibodies, particularly human antibodies, are disclosed having activity in treatment of demyelinating diseases and diseases of the central nervous system. Neuromodulatory agents are provided comprising a material selected from the group consisting of an antibody capable of binding structures or cells in the central nervous system, a peptide analog, and active fragments, monomers and combinations thereof having one or more of the following characteristics: capable of inducing remyelination; binding to neural tissue; promoting Ca++ signaling with oligodendrocytes; and promoting cellular proliferation of glial cells. Amino acid and DNA sequences of exemplary antibodies are disclosed. Methods are described for treating demyelinating diseases, and diseases of the central nervous system, using polyclonal IgM antibodies and human monoclonal antibodies sHIgm22(LYM 22), sHIgm46(LYM46) ebvHIgM MSI19D10, CB2bG8, AKJR4, CB2iE12, CB2iE7, MSI19E5 and MSI10E10, and active fragments thereof.
    Type: Application
    Filed: June 21, 2017
    Publication date: March 29, 2018
    Inventors: Moses Rodriguez, David J. Miller, Larry R. Pease