Patents by Inventor David J. Rauscher

David J. Rauscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9650448
    Abstract: The process includes reacting a reaction mixture comprising magnesium ethoxide (Mg(OEt)2), triethylaluminum (TEAl), and 2-ethylhexanol (2-EHOH) to form magnesium 2-ethyl hexyl alkoxide (Mg(2-EHO)2) and contacting Mg(2-EHO)2 in hexane with a first agent to form a reaction product “A.” The process further includes contacting the reaction product “A” with a second agent to form a reaction product “B”, wherein the second agent includes a transition metal and a halogen. The process further includes contacting the reaction product “B” with a third agent to form a reaction product “C”, wherein the third agent includes a first metal halide. In addition, the process includes contacting the reaction product “C” with a fourth agent to form a reaction product “D”, wherein the fourth agent includes a second metal halide. The process also includes contacting the reaction product “D” with a fifth agent to form a Ziegler-Natta catalyst, wherein the fifth agent includes an organoaluminum compound.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: May 16, 2017
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, David J. Rauscher
  • Patent number: 9624321
    Abstract: A process of forming a Ziegler-Natta catalyst component is disclosed. The process includes contacting an alkyl magnesium compound with an alcohol and a first organoaluminum compound to form a magnesium dialkoxide compound and contacting the magnesium dialkoxide compound with a titanating agent to form reaction product “A.” The process further includes reacting reaction product “A” with a halogenating agent to form reaction product “B” and reacting reaction product “B” with a second organoaluminum compound to form a single halogenated catalyst component.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: April 18, 2017
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, David J. Rauscher
  • Publication number: 20150361187
    Abstract: The process includes reacting a reaction mixture comprising magnesium ethoxide (Mg(OEt)2), triethylaluminum (TEAl), and 2-ethylhexanol (2-EHOH) to form magnesium 2-ethyl hexyl alkoxide (Mg(2-EHO)2) and contacting Mg(2-EHO)2 in hexane with a first agent to form a reaction product “A.” The process further includes contacting the reaction product “A” with a second agent to form a reaction product “B”, wherein the second agent includes a transition metal and a halogen. The process further includes contacting the reaction product “B” with a third agent to form a reaction product “C”, wherein the third agent includes a first metal halide. In addition, the process includes contacting the reaction product “C” with a fourth agent to form a reaction product “D”, wherein the fourth agent includes a second metal halide. The process also includes contacting the reaction product “D” with a fifth agent to form a Ziegler-Natta catalyst, wherein the fifth agent includes an organoaluminum compound.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Lei Zhang, David J. Rauscher
  • Publication number: 20150361188
    Abstract: A process of forming a Ziegler-Natta catalyst component is disclosed. The process includes contacting an alkyl magnesium compound with an alcohol and a first organoaluminum compound to form a magnesium dialkoxide compound and contacting the magnesium dialkoxide compound with a titanating agent to form reaction product “A.” The process further includes reacting reaction product “A” with a halogenating agent to form reaction product “B” and reacting reaction product “B” with a second organoaluminum compound to form a single halogenated catalyst component.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Lei Zhang, David J. Rauscher
  • Publication number: 20140051816
    Abstract: Embodiments of the invention generally include multicomponent catalyst systems, polymerization processes and reactor blends formed by the processes. The multicomponent catalyst system generally includes a first catalyst component selected from an isotactic directing metallocene catalyst. The multicomponent catalyst system further includes a second syndiotactic directing metallocene catalyst component.
    Type: Application
    Filed: May 21, 2012
    Publication date: February 20, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Jun Tian, William J. Gauthier, David J. Rauscher, Nathan Williams
  • Publication number: 20120322961
    Abstract: Embodiments of the invention generally include multicomponent catalyst systems, polymerization processes and reactor blends formed by the processes. The multicomponent catalyst system generally includes a first catalyst component and a second catalyst component, wherein the second catalyst component is different from the first catalyst component.
    Type: Application
    Filed: May 21, 2012
    Publication date: December 20, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: David J. Rauscher, Jun Tian, William J. Gauthier, Shady N. Henry
  • Publication number: 20120322960
    Abstract: Embodiments of the invention generally include multicomponent catalyst systems, polymerization processes and reactor blends formed by the processes. The multicomponent catalyst system generally includes a first catalyst component selected from an isotactic directing metallocene catalyst. The multicomponent catalyst system further includes a second syndiotactic directing metallocene catalyst component.
    Type: Application
    Filed: May 21, 2012
    Publication date: December 20, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Jun Tian, William J. Gauthier, David J. Rauscher, Nathan Williams
  • Patent number: 7470764
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: December 30, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7202191
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: April 10, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael R. Wallace
  • Patent number: 7109143
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7022796
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Patent number: 6855783
    Abstract: Supported metallocene catalysts and processes for the use of such catalysts in isotactic polymerization of a C3+ ethylenically unsaturated monomer. The supported catalysts comprise a particulate silica support, an alkyl alumoxane component, and a metallocene catalyst component. The support has an average particle size of 10-50 microns, a surface area of 200-800 m2/g and a pore volume of 0.9-2.1 milliliters per gram (ml/g). Alumoxane is incorporated onto the support to provide a weight ratio of alumoxane to silica of at least 0.8:1.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: February 15, 2005
    Assignee: Fina Technology, Inc.
    Inventors: William J. Gauthier, Margaret Kerr, Jun Tian, David J. Rauscher, Constance Hayworth Patrick, Shady Henry
  • Publication number: 20040204310
    Abstract: Supported metallocene catalysts and processes for the use of such catalysts in isotactic polymerization of a C3+ethylenically unsaturated monomer. The supported catalysts comprise a particulate silica support, an alkyl alumoxane component, and a metallocene catalyst component. The support has an average particle size of 10-50 microns, a surface area of 200-800 m2/g and a pore volume of 0.9-2.1 milliliters per gram (ml/g). Alumoxane is incorporated onto the support to provide a weight ratio of alumoxane to silica of at least 0.8:1.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 14, 2004
    Inventors: William J. Gauthier, Margaret Kerr, Jun Tian, David J. Rauscher, Constance Hayworth Patrick, Shady Henry
  • Publication number: 20040116629
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Application
    Filed: September 10, 2003
    Publication date: June 17, 2004
    Applicant: Fina Technology Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Publication number: 20040048991
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Applicant: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 6667380
    Abstract: Processes for the formulation of Ziegler-type catalysts from a plurality of catalyst components including transition metal, organosilicon electron donor, and organoaluminum co-catalyst components. The components are mixed together in the course of formulating the Ziegler-type catalyst to be charged to an olefin polymerization reactor. Several orders of addition of the catalyst components can be used in formulating the Ziegler catalyst. One involves mixing of the transition metal component with the organoaluminum co-catalyst to formulate a mixture having an aluminum/transition metal mole ratio of at least 200. This mixture is combined with the organosilicon electron donor component to produce a Ziegler-type catalyst formulation having an aluminum/silicon mole ratio of no more than 50. There may be an initial pre-polymerization of the catalyst prior to introducing the catalyst into an olefin polymerization reactor.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 23, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Patent number: 6657025
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 2, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie
  • Patent number: 6657024
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: December 2, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 6489411
    Abstract: Processes for the polymerization of olefins with Zeigler-type catalyst systems which involve transition metal catalyst components comprising 4, 5 or 6 transition metals incorporating internal electron donors to provide desired polymerization characteristics, including yield and polymer characteristics. Specific olefins used in the polymerization process are C2-C4 alpha olefins such as propylene in the production of stereoregular polypropylene. The catalyst system comprised a transition metal component having an internal electron donor in an amount providing an internal donor/transition metal mole ratio of no more than 2/3. This is combined with an organoaluminum co-catalyst component to provide a precusor mixture having an aluminum/transition metal mole ration of at least 100. The precusor mixture is combined with an organosilicon external electron donor component in an amount to provide an aluminum/silicon mole ration of no more than 200.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: December 3, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Publication number: 20020161139
    Abstract: A method of preparing ultra high melt flow polypropylene having reduced xylene solubles is provided. The method utilizes a diether internal donor-containing Ziegler-Natta catalyst system to polymerize propylene. The polypropylene produced is characterized by having a melt flow of at least about 300 g/10 min and a xylene solubles of not more than about 3.5% and no peroxide residue. The catalyst system may also include an internal phthalate donor. The method of the invention allows the amount of external donors to be reduced, or even eliminated, without significant increases in xylene solubles.
    Type: Application
    Filed: January 11, 2002
    Publication date: October 31, 2002
    Inventors: Kenneth Paul Blackmon, Luis Paulo Barthel-Rosa, Shabbir Ahmedbhai Malbari, David J. Rauscher, Michel M. Daumerie