Patents by Inventor David J. Stone
David J. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12062464Abstract: Collimators and other components for use in neutron scattering experiments or to provide neutron shielding in nuclear reactors or accelerator based neutron sources are produced by additive manufacturing from neutron absorbing material, such as boron carbide (B4C) or isotopically enriched boron carbide (10B).Type: GrantFiled: August 1, 2022Date of Patent: August 13, 2024Assignee: UT-Battelle, LLCInventors: David C. Anderson, Anibal J. Ramirez-Cuesta, Matthew B. Stone, Amelia M. Elliott, Derek H. Siddel
-
Patent number: 10030743Abstract: A chain tensioner includes a blade assembly operatively connected to a bracket. The blade assembly includes a plastic blade and a spring, with a first spring end located in a first slot and a second spring end located in a second slot. The first spring end contacts a first lower wall at a first contact location and the second spring end contacts a second lower wall at a second contact location. A pivot end spring force vector SFP acts on the first lower wall at the first contact location and a free end spring force vector SFR acts on the second lower wall at the second contact location. A chain is in contact with the outer surface of the blade. The blade assembly is mounted on the bracket with a bracket pin located in the pivot bore and with the foot of the blade supported on a bracket ramp. A pivot pin force vector FP acts on an inside diameter of the pivot bore through the pivot axis. A ramp force vector FR acts on the blade foot at a ramp contact location.Type: GrantFiled: March 8, 2016Date of Patent: July 24, 2018Assignee: Cloyes Gear and Products, Inc.Inventors: James D. Young, David J. Stone
-
Publication number: 20160265632Abstract: A chain tensioner includes a blade assembly operatively connected to a bracket. The blade assembly includes a plastic blade and a spring, with a first spring end located in a first slot and a second spring end located in a second slot. The first spring end contacts a first lower wall at a first contact location and the second spring end contacts a second lower wall at a second contact location. A pivot end spring force vector SFP acts on the first lower wall at the first contact location and a free end spring force vector SFR acts on the second lower wall at the second contact location. A chain is in contact with the outer surface of the blade. The blade assembly is mounted on the bracket with a bracket pin located in the pivot bore and with the foot of the blade supported on a bracket ramp. A pivot pin force vector FP acts on an inside diameter of the pivot bore through the pivot axis. A ramp force vector FR acts on the blade foot at a ramp contact location.Type: ApplicationFiled: March 8, 2016Publication date: September 15, 2016Applicant: Cloyes Gear and Products, Inc.Inventors: James D. Young, David J. Stone
-
Publication number: 20140304845Abstract: Methods, biomarkers, and expression signatures are disclosed for assessing the disease progression of Alzheimer's disease (AD). In one embodiment, BioAge (biological age), NdStress (neurodegenerative stress), Alz (Alzheimer), and Inflame (inflammation) are used as biomarkers of AD progression. In another aspect, the invention comprises a gene signature for evaluating disease progression. In still another embodiment, methods for evaluating disease progression are provided. In yet another embodiment, the invention can be used to identify animal models for use in the development and evaluation of therapeutics for the treatment of AD.Type: ApplicationFiled: October 26, 2012Publication date: October 9, 2014Inventors: Andrey Loboda, Michael Nebozhyn, Alexei Podtelezhnikov, David J. Stone, Keith Tanis, William J. Ray
-
Publication number: 20100041026Abstract: Compositions and methods for identifying modulators of RUFY2 are described. The methods are particularly useful for identifying analytes that antagonize RUFY2's effect on processing of amyloid precursor protein to A? peptide and thus useful for identifying analytes that can be used for treating Alzheimer disease.Type: ApplicationFiled: June 23, 2006Publication date: February 18, 2010Inventors: John M. Majercak, William J. Ray, David J. Stone
-
Publication number: 20100040552Abstract: The present invention provides methods for identifying a modulator of glucocorticoid receptor activity. In one embodiment, the methods include the steps of (a) contacting neuron-like cells, in vitro, with a chemical agent; (b) measuring the expression of a member, or group of members, of a group of genes (as defined herein) in the neuron-like cells contacted with the chemical agent; and (c) determining whether the chemical agent significantly alters the expression of the member, or group of members, of the group of genes, thereby determining whether the chemical agent is likely to be a modulator of glucocorticoid receptor activity. In another embodiment, an in vivo method for identifying a modulator of glucocorticoid receptor activity is provided.Type: ApplicationFiled: October 14, 2009Publication date: February 18, 2010Applicants: ROSETTA INPHARMATICS LLC, MERCK & CO., INC.Inventors: David J. Stone, Janet E. Clark, Edward C. Hayes, III
-
Publication number: 20090068678Abstract: Methods for identifying modulators of NOAH10 are described. The methods are particularly useful for identifying analytes that antagonize NOAH10's effect on processing of amyloid precursor protein (APP) to amyloid beta (A?) peptide and are useful for identifying analytes that can be used for treating Alzheimer disease.Type: ApplicationFiled: April 28, 2006Publication date: March 12, 2009Inventors: John M. Majercak, William J. Ray, David J. Stone
-
Publication number: 20090047702Abstract: Methods for identifying modulators of KEAH6 are described. The methods are particularly useful for identifying analytes that antagonize KEAH6's effect on processing of amyloid precursor protein to A? peptide and thus useful for identifying analytes that can be used for treating Alzheimer disease.Type: ApplicationFiled: June 14, 2006Publication date: February 19, 2009Applicant: MERCK & CO., INC.Inventors: John M. Majercak, William J. Ray, David J. Stone
-
Patent number: 7109000Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: GrantFiled: March 1, 2002Date of Patent: September 19, 2006Assignee: CuraGen CorporationInventors: Shlomit R. Edinger, John R. MacDougall, Isabelle Millet, Karen Ellerman, David J. Stone, Valerie Gerlach, William M. Grosse, John P. Alsobrook, II, Denise M. Lepley, Daniel K. Rieger, Catherine E. Burgess, Stacie J. Casman, Kimberly A. Spytek, Ferenc L. Boldog, Li Li, Muralidhara Padigaru, Vishnu Mishra, Meera Patturajan, Suresh G. Shenoy, Luca Rastelli, Velizar T. Tchernev, Corine A. M. Vernet, Bryan D. Zerhusen, Uriel M. Malyankar, Xiaojia Guo, Charles E. Miller, Esha A. Gangolli
-
Patent number: 7034132Abstract: Disclosed herein are nucleic acid sequences that encode G-coupled protein-receptor related polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: GrantFiled: June 3, 2002Date of Patent: April 25, 2006Inventors: David W. Anderson, Jason C. Baumgartner, Ferenc L. Boldog, Stacie J. Casman, Shlomit R. Edinger, Esha A. Gangolli, Valerie Gerlach, Linda Gorman, Xiaojia Guo, Tord Hjalt, Ramesh Kekuda, Li Li, John R. MacDougall, Uriel M. Malyankar, Isabelle Millet, Muralidhara Padigaru, Meera Patturajan, Carol E. A. Pena, Luca Rastelli, Richard A. Shimkets, David J. Stone, Kimberly A. Spytek, Corine A. M. Vernet, Edward Z. Voss, Bryan D. Zerhusen
-
Publication number: 20040096877Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: July 21, 2003Publication date: May 20, 2004Inventors: Raymond J. Taupier, Muralidhara Padigaru, Luca Rastelli, Steven Kurt Spaderna, Richard A. Shimkets, Bryan D. Zerhusen, Kimberly Ann Spytek, Suresh G. Shenoy, Li Li, Vladimir Y. Gusev, William M. Grosse, John P. Alsobrook, Denise M. Lepley, Catherine E. Burgess, Valerie L. Gerlach, Karen Ellerman, John R. MacDougall, David J. Stone, Glennda Smithson
-
Publication number: 20040072997Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: January 3, 2003Publication date: April 15, 2004Inventors: John P. Alsobrook, David W. Anderson, Catherine E. Burgess, Shlomit R. Edinger, Karen Ellerman, Katarzyna Furtak, Esha A. Gangolli, Valerie Gerlach, Jennifer A. Gilbert, Erik Gunther, Linda Gorman, Xiaojia (Sasha) Guo, Weizhen Ji, Li Li, Charles E. Miller, Muralidhara Padigaru, Meera Patturajan, Luca Rastelli, John R. MacDougall, Vishnu Mishra, Glennda Smithson, Kimberly A. Spytek, David J. Stone, Suresh G. Shenoy, Raymond J. Taupier, Corine A.M. Vernet, Mei Zhong, Uriel M. Malyankar, Isabelle Millet, Ramesh Kekuda, William M. Grosse
-
Publication number: 20040067882Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies that immunospecifically bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the novel polypeptide, polynucleotide, or antibody specific to the polypeptide. Vectors, host cells, antibodies and recombinant methods for producing the polypeptides and polynucleotides, as well as methods for using same are also included. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: November 5, 2002Publication date: April 8, 2004Inventors: John P. Alsobrook, Enrique Alvarez, David W. Anderson, Melanie Baron, Ferenc L. Boldog, Catherine E. Burgess, Stacie J. Casman, Andrei Chapoval, Mohanraj Dhanabal, Shlomit R. Edinger, Andrew Eisen, Karen Ellerman, Seth Ettenberg, Esha A. Gangolli, Valerie Gerlach, Linda Gorman, William M. Grosse, Xiaojia (Sasha) Guo, Craig Hackett, Weizhen Ji, Ramesh Kekuda, Nikolai V. Khramtsov, Denise M. Lepley, Li Li, John R. MacDougall, Uriel M. Malyankar, Ann Mazur, Kelly McQueeney, Peter S. Mezes, Charles E. Miller, Isabelle Millet, Vishnu Mishra, Muralidhara Padigaru, Meera Patturajan, Carol E. A. Pena, John A. Peyman, Luca Rastelli, Daniel K. Rieger, Mark E. Rothenberg, Suresh G. Shenoy, Richard A. Shimkets, Glennda Smithson, Steven K. Spaderna, Gary Starling, Kimberly A. Spytek, David J. Stone, Velizar T. Tchernev, Nancy Twomlow, Corine A.M. Vernet, Bryan D. Zerhusen, Edward Z. Voss, Mei Zhong
-
Publication number: 20040067505Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: May 1, 2003Publication date: April 8, 2004Inventors: Enrique Alvarez, David Anderson, Ferenc Boldog, Elina Catterton, Shlomit R. Edinger, Elma Fernandes, Valerie Gerlach, Linda Gorman, William Grosse, Xiaojia (Sasha) Guo, Weizhen Ji, Ramesh Kekuda, Li Li, John R. MacDougall, Muralidhara Padigaru, Meera Patturajan, Jeffery D. Peterson, Luca Rastelli, Richard Shimkets, Kimberly Spytek, David J. Stone, Corine A.M. Vernet, Edward Voss, Mei Zhong
-
Publication number: 20040068095Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: March 13, 2002Publication date: April 8, 2004Inventors: Richard A. Shimkets, Raymond J. Taupier, Catherine E. Burgess, Bryan D. Zerhusen, Peter S. Mezes, Luca Rastelli, Uriel M. Malyankar, William M. Grosse, John P. Alsobrook, Denise M. Lepley, Kimberly Ann Spytek, Li Li, Shlomit Edinger, Valerie Gerlach, Karen Ellerman, John R. MacDougall, Erik Gunther, Isabelle Millet, David J. Stone, Glennda Smithson, Edward S. Szekeres, Weizhen Ji
-
Publication number: 20040058338Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: December 2, 2002Publication date: March 25, 2004Inventors: Michele L. Agee, John P. Alsobrook, David W. Anderson, Constance Berghs, Ferenc L. Boldog, Catherine E. Burgess, Elina Catterton, Vincent A. DiPippo, Shlomit R. Edinger, Andrew Eisen, Karen Ellerman, Esha A. Gangolli, Valerie Gerlach, Linda Gorman, Bonnie Gould Rothberg, Xiaojia Sasha Guo, John L. Herrmann, Yuan-Di Halvorsen, Weizhen Ji, Ramesh Kekuda, Nikolai V. Khramtsov, William J. LaRochelle, Denise M. Lepley, Li Li, John R. MacDougall, Charles E. Miller, Tatiana Ort, Muralidhara Padigaru, Meera Patturajan, Carol E. A. Pena, John A. Peyman, Daniel K. Rieger, Mark E. Rothenberg, Suresh G. Shenoy, Glennda Smithson, Steven K. Spaderna, Kimberly A. Spytek, David J. Stone, Raymond J. Taupier, Corine A.M. Vernet, Edward Z. Voss, Mei Zhong
-
Publication number: 20040058347Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: March 5, 2003Publication date: March 25, 2004Inventors: John Alsobrook, Catherine E. Burgess, Shlomit R. Edinger, Valerie Gerlach, Weizhen Ji, Ramesh Kekuda, Li Li, John R. MacDougall, Charles E. Miller, Isabelle Millet, Meera Patturajan, Carol E. A. Pena, Daniel K. Rieger, Paul Sciore, Suresh G. Shenoy, Glennda Smithson, Kimberly A. Spytek, David J. Stone, Edward Z. Voss, Mei Zhong
-
Publication number: 20040052806Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: January 4, 2002Publication date: March 18, 2004Inventors: Ramesh Kekuda, John P. Alsobrook, Velizar T. Tchernev, Xiaohong Liu, Kimberly A. Spytek, Meera Patturajan, William M. Grosse, Denise M. Lepley, Catherine E. Burgess, Corine A.M. Vernet, Li Li, Linda Gorman, Shlomit R. Edinger, Paul Sciore, Karen Ellerman, Uriel M. Malyankar, Mark E. Rothenberg, David J. Stone, Ferenc L. Boldog, Xiaojia (Sasha) Guo, Suresh G. Shenoy, David W. Anderson, Muralidhara Padigaru, Raymond J. Taupier, Charles E. Miller, Andrew Eisen
-
Publication number: 20040048245Abstract: Disclosed herein are nucleic acid sequences that encode novel polypeptides. Also disclosed are polypeptides encoded by these nucleic acid sequences, and antibodies, which immunospecifically-bind to the polypeptide, as well as derivatives, variants, mutants, or fragments of the aforementioned polypeptide, polynucleotide, or antibody. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: October 5, 2001Publication date: March 11, 2004Inventors: Richard A. Shimkets, Raymond J. Taupier, Catherine E. Burgess, Bryan D. Zerhusen, Peter S. Mezes, Luca Rastelli, Uriel M. Malyankar, William M. Grosse, John P. Alsobrook, Denise M. Lepley, Kimberly Ann Spytek, Li Li, Shlomit Edinger, Valerie Gerlach, Karen Ellerman, John R. MacDougall, Erik Gunther, Isabelle Millet, David J. Stone, Glennda Smithson, Edward S. Szekeres
-
Publication number: 20040043929Abstract: The present invention provides novel isolated polynucleotides and small molecule target polypeptides encoded by the polynucleotides. Antibodies that immunospecifically bind to a novel small molecule target polypeptide or any derivative, variant, mutant or fragment of that polypeptide, polynucleotide or antibody are disclosed, as are methods in which the small molecule target polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states. More specifically, the present invention discloses methods of using recombinantly expressed and/or endogenously expressed proteins in various screening procedures for the purpose of identifying therapeutic antibodies and therapeutic small molecules associated with diseases. The invention further discloses therapeutic, diagnostic and research methods for diagnosis, treatment, and prevention of disorders involving any one of these novel human nucleic acids and proteins.Type: ApplicationFiled: January 3, 2003Publication date: March 4, 2004Inventors: David W. Anderson, Robert A. Ballinger, Jason C. Baumgartner, Catherine E. Burgess, Stacie J. Casman, John S. Chant, Constance Berghs, Esha A. Gangolli, Shlomit R. Edinger, Karen Ellerman, Katarzyna Furtak, Valerie Gerlach, Jennifer A. Gilbert, Erik Gunther, Linda Gorman, Xiaojia Sasha Guo, Weizhen Ji, Li Li, Xiaohong Liu, Charles E. Miller, Isabelle Millet, Muralidhara Padigaru, Meera Patturajan, Luca Rastelli, John R. MacDougall, Vishnu Mishra, Carol E.A. Pena, Steven K. Spaderna, Richard A. Shimkets, Glennda Smithson, Kimberly A. Spytek, David J. Stone, Suresh G. Shenoy, Tatiana Ort, Raymond J. Taupier, Velizar T. Tchernev, Corine A.M. Vernet, Adam R. Wolenc, Bryan D. Zerhusen, Mei Zhong