Patents by Inventor David J. Wiebe

David J. Wiebe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399926
    Abstract: A circumferentially extending sealing band is located within sealing band receiving slots formed in adjacent turbine engine disks. The sealing band includes a plurality of seal strips forming overlap joints defined by overlapping end portions, each formed by a tongue portion extending from a seal face of one seal strip past a seal face of the adjacent seal strip, along a radially inward facing side of the adjacent seal strip. A joint gap is defined within at least one overlap joint between the seal face of the one seal strip and the seal face of the adjacent strip, and a spacer is affixed to the one seal strip and is located at a position within the joint gap between the seal faces to limit circumferential movement of the seal faces toward each other.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: July 26, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventor: David J. Wiebe
  • Patent number: 9388738
    Abstract: A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54) defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 12, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David J. Wiebe, David A. Little, Richard C. Charron
  • Patent number: 9322558
    Abstract: A combustor apparatus defining a combustion zone where air and fuel are burned to create high temperature combustion products. The combustor apparatus comprises an outer wall including a fuel inlet opening for receiving a fuel feed pipe. A coupling assembly is engaged with the fuel feed pipe at the fuel inlet opening to attach the fuel feed pipe to the outer wall. A fuel injection system is located in the interior volume of the outer wall and comprises fuel supply structure including a fuel feed block having a fuel intake passage aligned with the outlet portion of the fuel feed pipe. A coupling fastener is engaged against an exterior outer face of the fuel feed block to create a sealed coupling for containing fuel passing from the fuel feed pipe into the fuel feed block, and to secure the fuel feed block relative to the coupling assembly.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: April 26, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Stephen A. Ramier, David J. Wiebe, Lawrence P. Budnick, Mark L. Adamson, Daniel W. Garan, Robert H. Bartley, Yadollah Naghian
  • Patent number: 9316153
    Abstract: A turbine exhaust casing having an outer casing, an inner casing, an annular exhaust gas path defined between outer and inner flow path walls, and a turbine exhaust casing cavity located radially outward and radially inward from the gas path. A plurality of structural struts support the inner casing to the outer casing, and a fairing surrounds each of the struts in an area extending between the outer and inner flow path walls. A first purge air path extends through at least one of the struts for conducting purge cooling air radially inward to the inner casing, and a second purge air path extends through the strut for further conducting the purge cooling air radially outward to provide a flow of purge air to a location of the exhaust casing cavity radially outward from the outer flow path wall.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: April 19, 2016
    Assignee: Siemens Energy, Inc.
    Inventors: Harry Patat, Cheryl A. Schopf, Jerome H. Katy, Adam Wallace, David J. Wiebe
  • Patent number: 9267689
    Abstract: A combustor apparatus defines a combustion zone where air and fuel are burned to create high temperature combustion products. The combustor apparatus includes an outer wall, coupling structure on the outer wall adjacent to a fuel inlet opening thereof, a fuel injection system, a fuel feed assembly, and a fitting member. The fuel injection system provides fuel to be burned in the combustion zone. The fuel supply structure includes a threaded inner surface formed from a first material. The fuel feed assembly includes a fuel feed pipe that extends through the fuel inlet opening in the outer wall and has an outlet portion formed from the first material and that is threadedly engaged with the fuel supply structure, and an inlet portion affixed to the outlet portion and formed from a second material. The fitting member secures the fuel feed assembly relative to the outer wall.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 23, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: David J. Wiebe, Stephen A. Ramier, Robert H. Bartley, Daniel W. Garan, Erick J. Deane, Mark L. Adamson, Yadollah Naghian
  • Patent number: 9206699
    Abstract: A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: December 8, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Jose L. Rodriguez
  • Patent number: 9115600
    Abstract: A turbine section of a turbine engine includes rotatable structure, an outer casing disposed about the rotatable structure, and an inner casing disposed about the rotatable structure and suspended radially inwardly from the outer casing. Rotation of the rotatable structure during operation drives at least one of a compressor and a generator. The inner casing defines a hot gas flow path through which hot combustion gases pass during operation. The inner casing comprises a plurality of wall sections. Each wall section includes a panel having an inner portion and an outer portion opposed from and affixed to the inner portion. The inner portion at least partially defines the hot gas flow path and the inner portion is radially spaced from the outer portion such that a substantially fluid tight chamber is formed therebetween. The fluid tight chamber reduces thermal energy transfer from the inner portion to the outer portion.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: August 25, 2015
    Assignee: Siemens Energy, Inc.
    Inventor: David J. Wiebe
  • Patent number: 9091180
    Abstract: An airfoil assembly including an endwall and an airfoil extending from the into a gas flow path. The endwall includes upstream and downstream edges, and is defined on a platform structure having a front surface extending radially in a direction of a thickness of the platform structure. At least one fluid injection passage extends through the platform structure in a direction from the upstream edge toward the downstream edge of the endwall. The fluid injection passage has an outlet opening defined at the endwall and an inlet opening in fluid communication with a pressurized fluid source. The fluid injection passage extends at a shallow angle relative to a plane of the endwall wherein the fluid injection passage defines a passage axis passing through the front surface and the endwall for effecting energization of a boundary layer between the outlet opening and the airfoil leading edge.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: July 28, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David J. Wiebe, Bruce L. Smith, Matthew D. Montgomery
  • Patent number: 9016066
    Abstract: A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 28, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Timothy A. Fox
  • Publication number: 20150107264
    Abstract: A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Inventors: David J. Wiebe, Richard C. Charron, Jay A. Morrison
  • Patent number: 8991192
    Abstract: A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 31, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Timothy A. Fox
  • Patent number: 8978389
    Abstract: A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventor: David J. Wiebe
  • Publication number: 20150056068
    Abstract: A circumferentially extending sealing band is located within sealing band receiving slots formed in adjacent turbine engine disks. The sealing band includes a plurality of seal strips forming overlap joints defined by overlapping end portions, each formed by a tongue portion extending from a seal face of one seal strip past a seal face of the adjacent seal strip, along a radially inward facing side of the adjacent seal strip. A joint gap is defined within at least one overlap joint between the seal face of the one seal strip and the seal face of the adjacent strip, and a spacer is affixed to the one seal strip and is located at a position within the joint gap between the seal faces to limit circumferential movement of the seal faces toward each other.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventor: David J. Wiebe
  • Patent number: 8959888
    Abstract: An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Reinhard Schilp, David J. Wiebe
  • Publication number: 20150000283
    Abstract: A combustor apparatus defining a combustion zone where air and fuel are burned to create high temperature combustion products. The combustor apparatus comprises an outer wall including a fuel inlet opening for receiving a fuel feed pipe. A coupling assembly is engaged with the fuel feed pipe at the fuel inlet opening to attach the fuel feed pipe to the outer wall. A fuel injection system is located in the interior volume of the outer wall and comprises fuel supply structure including a fuel feed block having a fuel intake passage aligned with the outlet portion of the fuel feed pipe. A coupling fastener is engaged against an exterior outer face of the fuel feed block to create a sealed coupling for containing fuel passing from the fuel feed pipe into the fuel feed block, and to secure the fuel feed block relative to the coupling assembly.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Stephen A. Ramier, David J. Wiebe, Lawrence P. Budnick, Mark L. Adamson, Daniel W. Garan, Robert H. Bartley, Yadollah Naghian
  • Patent number: 8920116
    Abstract: A wear prevention system for securing compressor airfoils within a turbine engine while reducing wear of related components may include a compressor diaphragm spring positioned in an airfoil receiving channel between a radially outer surface of a diaphragm base and a radially inner surface of the airfoil receiving channel. The spring may bias the diaphragm base and airfoil attached thereto radially inward against upstream and downstream arms formed from upstream and downstream recesses extending axially from the airfoil receiving channel in the compressor case. The compressor diaphragm spring may dampen vibration and increase service life of the diaphragm base.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: December 30, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Adam C. Pela
  • Publication number: 20140245740
    Abstract: A combustor apparatus defines a combustion zone where air and fuel are burned to create high temperature combustion products. The combustor apparatus includes an outer wall, coupling structure on the outer wall adjacent to a fuel inlet opening thereof, a fuel injection system, a fuel feed assembly, and a fitting member. The fuel injection system provides fuel to be burned in the combustion zone. The fuel supply structure includes a threaded inner surface formed from a first material. The fuel feed assembly includes a fuel feed pipe that extends through the fuel inlet opening in the outer wall and has an outlet portion formed from the first material and that is threadedly engaged with the fuel supply structure, and an inlet portion affixed to the outlet portion and formed from a second material. The fitting member secures the fuel feed assembly relative to the outer wall.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Inventors: David J. Wiebe, Stephen A. Ramier, Robert H. Bartley, Daniel W. Garan, Erick J. Deane, Mark L. Adamson, Yadollah Naghian
  • Publication number: 20140205447
    Abstract: A turbine exhaust casing having an outer casing, an inner casing, an annular exhaust gas path defined between outer and inner flow path walls, and a turbine exhaust casing cavity located radially outward and radially inward from the gas path. A plurality of structural struts support the inner casing to the outer casing, and a fairing surrounds each of the struts in an area extending between the outer and inner flow path walls. A first purge air path extends through at least one of the struts for conducting purge cooling air radially inward to the inner casing, and a second purge air path extends through the strut for further conducting the purge cooling air radially outward to provide a flow of purge air to a location of the exhaust casing cavity radially outward from the outer flow path wall.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Inventors: Harry Patat, Cheryl A. Schopf, Jerome H. Katy, Adam Wallace, David J. Wiebe
  • Patent number: 8770924
    Abstract: A support structure in a gas turbine engine including an inner annular wall and an outer annular wall defining an annular flow path, a casing housing the structure defining the flow path, and a bearing compartment housing a rotor shaft bearing located radially inwardly from the inner annular wall. The support structure includes a plurality of circumferentially spaced radial support members extending radially inwardly from an outer mount connection at the casing to an inner mount connection at the bearing compartment housing. The radial support members provide structural support for radial bearing loads on the rotor shaft bearing. A plurality of circumferentially spaced axial support members extend radially and axially inwardly from an outer mount connection at the casing to an inner mount connection located on an annular structure extending radially between connection locations at the bearing compartment housing and the inner annular wall.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 8, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Alexander Beeck, Malberto Gonzalez, Jerome H. Katy, David J. Wiebe
  • Patent number: 8757981
    Abstract: A locking spacer assembly for filling a void between adjacent components in a turbine engine. In at least one embodiment, the locking spacer assembly may be configured to be inserted between adjacent turbine blades in a disc groove in a turbine blade stage assembly. The locking spacer assembly may be formed from radially inward and outward supports coupled together with a locking device. The inward and outward supports establish the desired spacing between adjacent blade supports. The locking device may include components that prevent the locking device from accidentally loosening during use.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 24, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: David J. Wiebe