Patents by Inventor David J. Wiebe

David J. Wiebe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8668454
    Abstract: A cooling system for the fillet of a turbine blade is provided. The blade includes an airfoil transitioning to a platform having a flow path surface. The transition region is defined by a fillet. A cooling passage is formed in the platform and extends about at least a portion of the periphery of the airfoil. The cooling passage is located proximate to the flow path surface and is substantially aligned with at least a portion of the fillet. Coolant is delivered to the passage by a supply hole, which can reduce the temperature in the fillet region. As a result, thermal gradients in the fillet region can be minimized, which can reduce thermal stresses. An exhaust hole extends between the passage and the flow path surface of the platform. Thus, coolant discharged from the exhaust holes enters the flow path of the turbine.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: March 11, 2014
    Assignee: Siemens Energy, Inc.
    Inventor: David J. Wiebe
  • Publication number: 20140023483
    Abstract: An airfoil assembly including an endwall and an airfoil extending from the into a gas flow path. The endwall includes upstream and downstream edges, and is defined on a platform structure having a front surface extending radially in a direction of a thickness of the platform structure. At least one fluid injection passage extends through the platform structure in a direction from the upstream edge toward the downstream edge of the endwall. The fluid injection passage has an outlet opening defined at the endwall and an inlet opening in fluid communication with a pressurized fluid source. The fluid injection passage extends at a shallow angle relative to a plane of the endwall wherein the fluid injection passage defines a passage axis passing through the front surface and the endwall for effecting energization of a boundary layer between the outlet opening and the airfoil leading edge.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventors: David J. Wiebe, Bruce L. Smith, Matthew D. Montgomery
  • Patent number: 8622016
    Abstract: A wear indication system for use in turbine engines to measure gap closure that indicates the amount of wear found on a compressor diaphragm outer hook to prevent contact between a compressor vane attached to the compressor diaphragm outer hook and an upstream compressor blade. The wear indication system enables the wear to be serviced before failure occurs. The wear indication system may be formed from a base mounting plate having one or more wearable material layers attached thereto. In one embodiment, the wear indication system may have multiple wearable material layers. The outermost wearable layer may have a cross-sectional area less than a wearable layer to which it is attached to enable visual determination of the amount of wear that has occurred. The wearable layers may be formed from a honeycomb shaped material enabling wear to occur without threatening downstream components with damage.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 7, 2014
    Assignee: Siemens Energy, Inc.
    Inventor: David J. Wiebe
  • Patent number: 8585356
    Abstract: An electrode (54) in the tip (31) of a turbine or compressor blade (30), and a series of electrodes (68) in a shroud (36, 64) that surrounds a rotation path (33) of the blade tip. As the blade tip reaches each shroud electrode, a controller (74) activates an electrical potential between them that generates a plasma-induced gas flow (76) directed toward the pressure side (PS) of the airfoil. The plasma creates a seal between the blade tip and the shroud, and induces a gas flow that opposes a leakage gas flow (52) from the pressure side to the suction side (SS) of the blade over the blade tip (31).
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Matthew D. Montgomery
  • Patent number: 8549859
    Abstract: A combustion apparatus in a gas turbine engine comprises a combustor shell for receiving air, a fuel injection system associated with the combustor shell, a first fuel supply structure, and a shield structure. The fuel supply structure is in fluid communication with a source of fuel for delivering fuel from the source of fuel to the fuel injection system and comprises a first fuel supply elements including a first section extending along a first path having a component in an axial direction and a second section extending from the first section along a second path having a component in a circumferential direction. The shield structure is associated with at least a portion of the second section of the first fuel supply element.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: October 8, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Timothy A. Fox, David J. Wiebe, David M. Ritland, John Carl Glessner
  • Publication number: 20130219921
    Abstract: A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: David J. Wiebe, Jose L. Rodrigez
  • Publication number: 20130174560
    Abstract: A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.
    Type: Application
    Filed: December 18, 2012
    Publication date: July 11, 2013
    Inventors: DAVID J. WIEBE, TIMOTHY A. FOX
  • Publication number: 20130152543
    Abstract: A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventor: David J. Wiebe
  • Publication number: 20130133330
    Abstract: An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: WALTER R. LASTER, Reinhard Schilp, David J. Wiebe
  • Publication number: 20130089417
    Abstract: A wear prevention system for securing compressor airfoils within a turbine engine while reducing wear of related components is disclosed. The wear prevention system may include a compressor diaphragm spring positioned in an airfoil receiving channel between a radially outer surface of a diaphragm base and a radially inner surface of the airfoil receiving channel. The spring may bias the diaphragm base and airfoil attached thereto radially inward against upstream and downstream arms formed from upstream and downstream recesses extending axially from the airfoil receiving channel in the compressor case. The compressor diaphragm spring may dampen vibration and increase service life of the diaphragm base.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: DAVID J. WIEBE, Adam C. Pela
  • Publication number: 20130081407
    Abstract: An aero-derivative can annular gas turbine engine having: an aero gas turbine engine core including an aero high pressure compressor (65) interconnected with an aero high pressure turbine (73) by an aero high pressure shaft (142) in a geometric arrangement appropriate for association with an aero annular combustor (84), but with the aero annular combustor (84) and a first row of turbine vanes (38) of the aero high pressure turbine (73) absent; and a can annular combustor assembly (122) assembled with the aero gas turbine engine core and configured to receive compressed air from the aero high pressure compressor (65) and to accelerate and orient combustion gasses directly onto a first row of blades of the aero high pressure turbine (73).
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventor: David J. Wiebe
  • Publication number: 20130081399
    Abstract: A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54) defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventors: David J. Wiebe, David A. Little, Richard C. Charron
  • Publication number: 20130084163
    Abstract: A wear indication system for use in turbine engines to measure gap closure that indicates the amount of wear found on a compressor diaphragm outer hook to prevent contact between a compressor vane attached to the compressor diaphragm outer hook and an upstream compressor blade. The wear indication system enables the wear to be serviced before failure occurs. The wear indication system may be formed from a base mounting plate having one or more wearable material layers attached thereto. In one embodiment, the wear indication system may have multiple wearable material layers. The outermost wearable layer may have a cross-sectional area less than a wearable layer to which it is attached to enable visual determination of the amount of wear that has occurred. The wearable layers may be formed from a honeycomb shaped material enabling wear to occur without threatening downstream components with damage.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventor: David J. Wiebe
  • Publication number: 20130051995
    Abstract: A turbine section of a turbine engine includes rotatable structure, an outer casing disposed about the rotatable structure, and an inner casing disposed about the rotatable structure and suspended radially inwardly from the outer casing. Rotation of the rotatable structure during operation drives at least one of a compressor and a generator. The inner casing defines a hot gas flow path through which hot combustion gases pass during operation. The inner casing comprises a plurality of wall sections. Each wall section includes a panel having an inner portion and an outer portion opposed from and affixed to the inner portion. The inner portion at least partially defines the hot gas flow path and the inner portion is radially spaced from the outer portion such that a substantially fluid tight chamber is formed therebetween. The fluid tight chamber reduces thermal energy transfer from the inner portion to the outer portion.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventor: David J. Wiebe
  • Patent number: 8376697
    Abstract: A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: February 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Brian J. Wessell, Todd Ebert, Alexander Beeck, George Liang, Walter H. Marussich
  • Patent number: 8375726
    Abstract: A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 19, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Wiebe, Timothy A. Fox
  • Publication number: 20130011242
    Abstract: A support structure in a gas turbine engine including an inner annular wall and an outer annular wall defining an annular flow path, a casing housing the structure defining the flow path, and a bearing compartment housing a rotor shaft bearing located radially inwardly from the inner annular wall. The support structure includes a plurality of circumferentially spaced radial support members extending radially inwardly from an outer mount connection at the casing to an inner mount connection at the bearing compartment housing. The radial support members provide structural support for radial bearing loads on the rotor shaft bearing. A plurality of circumferentially spaced axial support members extend radially and axially inwardly from an outer mount connection at the casing to an inner mount connection located on an annular structure extending radially between connection locations at the bearing compartment housing and the inner annular wall.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Inventors: Alexander Beeck, Malberto Gonzalez, Jerome H. Katy, David J. Wiebe
  • Publication number: 20120275918
    Abstract: A locking spacer assembly for filling a void between adjacent components in a turbine engine. In at least one embodiment, the locking spacer assembly may be configured to be inserted between adjacent turbine blades in a disc groove in a turbine blade stage assembly. The locking spacer assembly may be formed from radially inward and outward supports coupled together with a locking device. The inward and outward supports establish the desired spacing between adjacent blade supports. The locking device may include components that prevent the locking device from accidentally loosening during use.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Inventor: David J. Wiebe
  • Patent number: 8281594
    Abstract: A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: October 9, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: David J. Wiebe
  • Patent number: 8210819
    Abstract: An airfoil structure, shim, and retention member combination includes an airfoil structure, a retention member and a shim. The airfoil structure may define a first recess. The retention member may define a second recess. The first and second recesses may define a cavity. The shim may include a main body and a plurality of first fins extending outwardly from a first side of the main body. The first fins may further extend transverse to a longitudinal axis of the main body. The shim may be positioned in the cavity such that the first fins extend in a direction substantially transverse to a longitudinal axis of the cavity.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: July 3, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: David J Wiebe, John W Finneran, Jeffery W Samuelson, Richard C Charron