Patents by Inventor David Jacobi

David Jacobi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10479927
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: November 19, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Patent number: 10435617
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 8, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Publication number: 20190264089
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 29, 2019
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Publication number: 20190233714
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Patent number: 10351758
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 16, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Publication number: 20190211658
    Abstract: Technologies relating to increasing hydraulic fracturing efficiencies in subterranean zones by degrading organic matter, such as kerogen, are described. A method for treating kerogen in a subterranean zone includes placing a composition in the subterranean zone, and the composition includes an oxidizer including sodium bromate and an additive including a tetrasubstituted ammonium salt.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 11, 2019
    Applicant: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Younane N. Abousleiman, David Jacobi
  • Publication number: 20190025275
    Abstract: Provided here are methods, apparatuses, and systems directed to the determination of geochemical properties of liquid hydrocarbons based on the dielectric properties of components of the liquid hydrocarbons using microwaves. Also disclosed is a method for characterizing a geochemical property of a liquid hydrocarbon by measuring the dielectric responses from a portion of the liquid hydrocarbon at different predetermined temperatures in two or more microwave resonant cavities to electromagnetic waves at select microwave frequencies, and determining a geochemical property of the liquid hydrocarbon in response to measurements of the dielectric responses.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 24, 2019
    Inventors: Jose Oliverio Alvarez, David Jacobi
  • Publication number: 20180347354
    Abstract: Systems, apparatuses, and computer-implemented methods are provided for the sensing and prediction of properties of source rock. Disclosed here is a method of predicting the maturity of a source rock that includes obtaining a plurality of data of a sample source rock from a plurality of data acquisition devices placed in vicinity of the sample source rock and analyzing the received data using a predictive correlation to determine maturity of the sample source rock. The predictive correlation is generated by applying a machine learning model to correlate the plurality of data acquired from a plurality of representative source rocks with a plurality of properties of the plurality of representative source rocks.
    Type: Application
    Filed: March 14, 2018
    Publication date: December 6, 2018
    Inventors: Weichang Li, Sebastian Csutak, David Jacobi, Tiffany Dawn McAlpin, Max Deffenbaugh, Shannon Lee Eichmann
  • Publication number: 20180328905
    Abstract: An example method includes analyzing rock from an image of a sample region of the rock. The example method includes accessing element maps of the sample region in a database, with each element map including an array of pixels, and with each pixel having a value that represents how closely the pixel correlates to a chemical element; accessing a database storing threshold values for multiple chemical elements including the chemical element; determining a presence of a substance in a portion of the sample region corresponding to the pixel by determining whether a value of the pixel in each of the element maps is greater than, or less than, a threshold value for a corresponding chemical element; labeling the pixel based on the presence of the substance in the pixel; and outputting data representing the substance map for rendering on a graphical interface.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Inventors: David Jacobi, John Longo, Jordan Kone, Qiushi Sun
  • Publication number: 20180319708
    Abstract: Methods and systems for fabricating synthetic source rocks with organic materials, for example, using high energy resonant acoustic mixing technology, are provided. An example method includes preparing one or more organic components including kerogen, mixing, by utilizing resonant acoustic waves, the one or more organic components with one or more inorganic components to obtain a mixture, and processing the mixture to fabricate a synthetic source rock. Another example method includes mixing one or more organic components and one or more inorganic components with a kerogen precursor as an organic binder to obtain a mixture including artificial kerogen and processing the mixture to fabricate a synthetic source rock. One or more mechanical or chemo-mechanical properties of the synthetic source rock can be characterized as one or more functions of the one or more organic components and the one or more inorganic components.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Mohammad Hamidul Haque, Younane N. Abousleiman, Katherine Leigh Hull, David Jacobi, Yanhui Han
  • Publication number: 20170370197
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for treating a geologic formation that includes providing a hydraulic fracture model, providing a first value representative of a volume of kerogen breaker in a fracturing fluid, determining a discrete fracture network (DFN) based on the hydraulic fracture model and the first value, determining a geomechanical model based on the DFN and a reservoir model based on the DFN, determining a hydrocarbon production volume based on the geomechanical model and the reservoir model, adjusting the first value based on the hydrocarbon production volume, and adjusting a volume of kerogen breaker in the fracturing fluid to a hydrocarbon reservoir based on the adjusted first value.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 28, 2017
    Inventors: Yanhui Han, Leiming Li, Ghaithan Muntasheri, Younane N. Abousleiman, Katherine Leigh Hull, David Jacobi
  • Publication number: 20170066959
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 9, 2017
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Patent number: 8311744
    Abstract: A method for estimating a lithotype of an earth formation, the method includes: obtaining at least two different energy spectra of radiation received from the earth formation using the logging tool, each energy spectrum having at least one of a natural gamma-ray spectrum, a fast neutron-induced inelastic spectrum, and a thermal neutron induced capture spectrum; establishing at least one geochemically-based constraint related to elemental spectral yields to be determined; determining the elemental spectral yields from the at least two different energy spectra by decomposing the at least two different energy spectra over weighted sum of monoelemental standards wherein at least one weight is constrained by the at least one geochemically-based constraint and each weight represents a proportion of one monoelemental standard; converting the elemental spectral yields to elemental concentrations; and using a classifier to receive the elemental concentrations as input and to provide a lithotype as output.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 13, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Alfred Khisamutdinov, Mikhail Fedorin, Richard Pemper, Xiaogang Han, Gary A. Feuerbacher, David Jacobi, Brian J. LeCompte, Freddy E. Mendez, John M. Longo
  • Publication number: 20100312479
    Abstract: A method for estimating a lithotype of an earth formation, the method includes: obtaining at least two different energy spectra of radiation received from the earth formation using the logging tool, each energy spectrum having at least one of a natural gamma-ray spectrum, a fast neutron-induced inelastic spectrum, and a thermal neutron induced capture spectrum; establishing at least one geochemically-based constraint related to elemental spectral yields to be determined; determining the elemental spectral yields from the at least two different energy spectra by decomposing the at least two different energy spectra over weighted sum of monoelemental standards wherein at least one weight is constrained by the at least one geochemically-based constraint and each weight represents a proportion of one monoelemental standard; converting the elemental spectral yields to elemental concentrations; and using a classifier to receive the elemental concentrations as input and to provide a lithotype as output.
    Type: Application
    Filed: April 21, 2010
    Publication date: December 9, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Alfred Khisamutdinov, Mikhail Fedorin, Richard Pemper, Xiaogang Han, Gary A. Feuerbacher, David Jacobi, Brian J. LeCompte, Freddy E. Mendez, John M. Longo
  • Patent number: 7356413
    Abstract: Parameters of a pore-scale geometric model of a clastic earth formation are adjusted so that the output of the model matches measurements made on a core sample. Additional properties of the earth formation are predicted using the pore-scale model. The additional properties may be based on additional measurements of properties of a fluid in the formation.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 8, 2008
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel T. Georgi, Songhua Chen, David Jacobi
  • Patent number: 7257490
    Abstract: Parameters of a pore-scale geometric model of a clastic earth formation are adjusted so that the output of the model matches measurements made one a core sample. Additional properties of the earth formation are predicted using the pore-scale model. The additional properties may be based on additional measurements of properties of a fluid in the formation.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: August 14, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel T. Georgi, Songhua Chen, David Jacobi
  • Publication number: 20060287201
    Abstract: Parameters of a pore-scale geometric model of a clastic earth formation are adjusted so that the output of the model matches measurements made on a core sample. Additional properties of the earth formation are predicted using the pore-scale model. The additional properties may be based on additional measurements of properties of a fluid in the formation.
    Type: Application
    Filed: June 3, 2005
    Publication date: December 21, 2006
    Inventors: Daniel Georgi, Songhua Chen, David Jacobi
  • Publication number: 20060276969
    Abstract: Parameters of a pore-scale geometric model of a clastic earth formation are adjusted so that the output of the model matches measurements made one a core sample. Additional properties of the earth formation are predicted using the pore-scale model. The additional properties may be based on additional measurements of properties of a fluid in the formation.
    Type: Application
    Filed: June 3, 2005
    Publication date: December 7, 2006
    Inventors: Daniel Georgi, Songhua Chen, David Jacobi