Patents by Inventor David K. Anderson

David K. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5849590
    Abstract: Rare elements, which can be selected from Ni, Cu, W, Li, N, Ce, Sn, Y, Nd, Nb, Co, La, Pb, Ga, Mo, Th, Cs, Ge, Sm, Gd, Be, Pr, Se, As, Hf, Dy, U, B, Yb, Er, Ta, Br, Ho, Eu, Sb, Tb, Lu, Tl, Hg, I, Bi, Tm, Cd, Ag, In, Se, Pd, Pt Au, He, Te, Rh, Re, Ir, Os, and Ru can be used to tag commodities, including explosive materials, with a unique tagging agent.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: December 15, 1998
    Inventors: David K. Anderson, II, Manuel E. Gonzalez, Nicholas Paul Valenti
  • Patent number: 5677186
    Abstract: A method is disclosed for identifying the source of a transported chemical shipment. The method employs either a chemical element or an organic compound with one or more atoms that are non-radioactive isotopes generally not found in nature. A small quantity of the isotopic compound is introduced into the storage vessel containing the chemical to be transported prior to shipment of the chemical. Upon arrival at its destination point, a sample of the chemical shipment is analyzed. Matching the isotopic compound found in the chemical with the isotopic compound introduced into the storage vessel prior to shipment is indicative that the shipped chemical is identical to the chemical received. Non-radioactive materials may further be employed for detecting the source of a newly introduced contaminant in a water supply. The chemical substance may be a non-radioactive isotope of the chemical shipment being transported.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: October 14, 1997
    Inventors: David K. Anderson, II, Manuel E. Gonzalez, Nicholas Paul Valenti
  • Patent number: 5677187
    Abstract: Rare elements, which can be selected from Ni, Cu, W, Li, N, Ce, Sn, Y, Nd, Nb, Co, La, Pb, Ga, Mo, Th, Cs, Ge, Sm, Gd, Be, Pr, Se, As, Hf, Dy, U, B, Yb, Er, Ta, Br, Ho, Eu, Sb, Tb, Lu, Tl, Hg, I, Bi, Tm, Cd, Ag, In, Se, Pd, Pt, Au, He, Te, Rh, Re, Ir, Os, and Ru can be used to tag commodities, including explosive materials, with a unique tagging agent.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: October 14, 1997
    Inventors: David K. Anderson, II, Manuel E. Gonzalez, Nicholas Paul Valenti
  • Patent number: 5555718
    Abstract: A combined cycle system has a gas turbine connected to a heat recovery steam generator and the heat recovery steam generator contains a selective catalytic reactor section wherein nitrogen oxides (NO.sub.x) are reacted with reactant gas such as ammonia or urea to produce molecular nitrogen and water vapor. The expanding transition section contains an array of flow profile control pipes extending across the section in a pattern which distribute the flue gas uniformly over the large cross-section of the heat transfer section. The reactant gas is injected into the flue gas stream through a series of nozzles spaced across the flow control pipes so as to uniformly mix and distribute the reactant gas in the flue gas stream before it enters the selective catalytic reactor section.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 17, 1996
    Assignee: Combustion Engineering, Inc.
    Inventors: David K. Anderson, Mark R. Malo
  • Patent number: 5474937
    Abstract: A method is disclosed for identifying the source of a transported chemical shipment. The method employs either a chemical element or an organic compound with one or more atoms that are non-radioactive isotopes generally not found in nature. A small quantity of the isotopic compound is introduced into the storage vessel containing the chemical to be transported prior to shipment of the chemical. Upon arrival at its destination point, a sample of the chemical shipment is analyzed. Matching the isotopic compound found in the chemical with the isotopic compound introduced into the storage vessel prior to shipment is indicative that the shipped chemical is identical to the chemical received. Non-radioactive materials may further be employed for detecting the source of a newly introduced contaminant in a water supply. The chemical substance may be a non-radioactive isotope of the chemical shipment being transported.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: December 12, 1995
    Assignee: Isotag, L.L.C.
    Inventors: David K. Anderson, II, Manuel E. Gonzalez, Nicholas P. Valenti
  • Patent number: 5315939
    Abstract: An integrated low NO.sub.x tangential firing system (12) that is particularly suited for use with pulverized solid fuel-fired furnaces (10), and a method of operating a pulverized solid fuel-fired furnace (10) equipped with an integrated low NO.sub.x tangential firing system (12). The integrated low NO.sub.x tangential firing system (12) when so employed with a pulverized solid fuel-fired furnace (10) is capable of limiting NO.sub.x emissions therefrom to less than 0.15 lb./10.sup. 6 BTU, while yet maintaining carbon-in-flyash to less than 5% and CO emissions to less than 50 ppm. The integrated low NO.sub.x tangential firing system (12) includes pulverized solid fuel supply means (62), flame attachment pulverized solid fuel nozzle tips (60), concentric firing nozzles, close-coupled overfire air (98,100), and multi-staged separate overfire air (104,106).
    Type: Grant
    Filed: May 13, 1993
    Date of Patent: May 31, 1994
    Assignee: Combustion Engineering, Inc.
    Inventors: Michael J. Rini, Todd D. Hellewell, David P. Towle, Patrick L. Jennings, Richard C. LaFlesh, David K. Anderson
  • Patent number: 5234021
    Abstract: A nozzle damper assembly (10) for installation in a duct (12) operative for measuring and controlling the flow of a gaseous medium through the duct (12). The subject nozzle damper assembly (10) includes enclosure means (24) cooperatively associated with the duct (12), shaft means (26) suitably supported from the sidewalls (32, 34, 36, 38) of the enclosure means (24), damper blade means (16,18) rotatable mounted on the shaft means (26) for movement within the enclosure means (24), damper blade operating means (28) operative for purposes of effecting the movement of the damper blade means (16,18) within the enclosure means (24), and flow measurement means (20,22) supported at a first location and at a second location relative to in lieu thereof the damper blade means (16,18) and operative to measure the flow of the gaseous medium through the nozzle damper assembly (10) such that control may be exercised over the flow of the gaseous medium through the duct (12) based on such measurements.
    Type: Grant
    Filed: January 24, 1992
    Date of Patent: August 10, 1993
    Assignee: Combustion Engineering, Inc.
    Inventors: Martin J. Kozlak, David K. Anderson
  • Patent number: 4722287
    Abstract: In a furnace (10) in which a sulfur-bearing fuel is burned, a sorbent material such as limestone is introduced into the upper portion of the furnace through a plurality of nozzle arrangements (40). Each nozzle arrangement comprises a pair of concentric pipes (42,44) with deflector means (46) located between the pipes and adjustable by means (54), so that the sorbent material introduced through the outer pipe is dispersed in an area near the furnace wall, while that introduced through the inner pipe is projected to the central portion of the furnace. There are sufficient nozzle arrangements, and they are so located, so as to cover substantially the entire cross-sectional area of the furnace with sorbent material.
    Type: Grant
    Filed: July 24, 1987
    Date of Patent: February 2, 1988
    Assignee: Combustion Engineering, Inc.
    Inventors: David K. Anderson, Robert W. Koucky
  • Patent number: 4715301
    Abstract: A furnace (10) in which pulverized coal is burned in suspension. The coal is introduced along with primary air, tangent to an imaginary circle (42). The auxiliary air is introduced tangent to an imaginary circle (44) directly above the primary air, in a direction of rotation opposite that of the primary air. The auxiliary air is directed tangent to a circle of greater diameter than that of the primary air. There are a plurality of alternating levels within the furnace where primary air (38), and then auxiliary air (40), is introduced.
    Type: Grant
    Filed: March 16, 1987
    Date of Patent: December 29, 1987
    Assignee: Combustion Engineering, Inc.
    Inventors: Joseph D. Bianca, David K. Anderson
  • Patent number: 4651653
    Abstract: A furnace (10) having burner means (12) associated with it for burning a sulfur-bearing fuel. Sorbent material, such as limestone, is introduced through nozzles (34) along a pipe (32) extending across the width of the furnace above the nose (31) in the upper portion of the furnace, so that the pipe and the sorbent are protected from heat radiation from the combustion within the furnace.
    Type: Grant
    Filed: July 7, 1986
    Date of Patent: March 24, 1987
    Assignee: Combustion Engineering, Inc.
    Inventors: David K. Anderson, Martin J. Kozlak
  • Patent number: 4597175
    Abstract: A vacuum dewar for infrared detectors is disclosed, in which unitary Kovar leads are used to reduce heat load and improve reliability and ruggedness. The Kovar leads are encapsulated in the glass walls of the hollow stem which carries the sensor array and supplies cryogenic fluid for cooling the array. The Kovar leads extend throughout the entire length of the stem to form both the electrical feed-through and the contact points at each end of the stem for the attachment of wire leads or cables, and to form a reinforcing structure for the stem. A fabrication method is also disclosed, in which a unitary Kovar leadframe is held under tension while two concentric glass tubes, between which the leadframe is vacuum-sandwiched, are fused together to form a stem encapsulating continuous Kovar leads throughout its length, while preventing excessive oxidation of the Kovar leads.
    Type: Grant
    Filed: January 8, 1985
    Date of Patent: July 1, 1986
    Assignee: Ford Aerospace & Communications Corporation
    Inventors: David A. K. Anderson, James B. Gilpin, Melvin J. Kniffin
  • Patent number: 4565925
    Abstract: A vacuum dewar for infrared detectors is disclosed, in which unitary Kovar leads are used to reduce heat load and improve reliability and ruggedness. The Kovar leads are encapsulated in the glass walls of the hollow stem which carries the sensor array and supplies cryogenic fluid for cooling the array. The Kovar leads extend throughout the entire length of the stem to form both the electrical feed-through and the contact points at each end of the stem for the attachment of wire leads or cables, and to form a reinforcing structure for the stem. A fabrication method is also disclosed, in which a unitary Kovar leadframe is held under tension while two concentric glass tubes, between which the leadframe is vacuum-sandwiched, are fused together to form a stem encapsulating continuous Kovar leads throughout its length, while preventing excessive oxidation of the Kovar leads.
    Type: Grant
    Filed: August 10, 1983
    Date of Patent: January 21, 1986
    Assignee: Ford Aerospace & Communications Corporation
    Inventors: David A. K. Anderson, James B. Gilpin, Melvin J. Kniffin
  • Patent number: 4532872
    Abstract: A furnace (10) in which bark or other cellulosic fuel (64) is burned on a traveling grate (24). Char (62) separated (48, 54) from the furnace exhaust gases is reinjected into the furnace beneath baffle plate (40) in such a manner that the raw bark (64) being introduced onto the grate forms a protective cover over the char (62) thus preventing the relatively light char particles from becoming reentrained in the gases before they are completely combusted.
    Type: Grant
    Filed: December 17, 1984
    Date of Patent: August 6, 1985
    Assignee: Combustion Engineering, Inc.
    Inventor: David K. Anderson
  • Patent number: 4132652
    Abstract: An improved baffle for use in an oil-water separation tank including a perpendicular solid portion and an inclined slotted portion extending downwardly and inwardly in the direction of flow from the lower edge of the perpendicular solid portion, the slotted portion having at least three rows of downwardly spaced apart slots extending laterally across the slotted portion, the uppermost of said rows an averge of from 1/2 to 2 slots per lateral meter and each of the lower rows therefrom having at least 25% more slots than said uppermost row.
    Type: Grant
    Filed: October 11, 1977
    Date of Patent: January 2, 1979
    Assignee: Chevron Research Company
    Inventors: David K. Anderson, Marvin A. Stewart
  • Patent number: 4064054
    Abstract: A wash tank is provided for separating an oil-water mixture and utilizes a plurality of baffle sections to assist in separating oil and water. The baffle sections include solid perpendicular portions and sloping perforated portions arranged in a special configuration within the tank.
    Type: Grant
    Filed: December 22, 1976
    Date of Patent: December 20, 1977
    Assignee: Chevron Research Company
    Inventors: David K. Anderson, Marvin A. Stewart