Patents by Inventor David K. Jan

David K. Jan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11480111
    Abstract: A gas turbine engine with a compressor supplying compressed air. A combustor receives the compressed air and fuel and generates a flow of combusted gas. A turbine receives a core flow of the combusted gas to rotate a turbine rotor. A turbine inlet nozzle directs the combusted gas to the turbine rotor. Vanes are disposed in the turbine inlet nozzle and rotate to vary a flow area through which the core flow passes. The vanes adjust a pressure ratio of the gas turbine engine to compensate for changing operational requirements of the gas turbine engine by rotating to positions matching the changing operational requirements.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 25, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: David K. Jan, Dietmar Giebert, Thomas G. Cunningham, Jr.
  • Patent number: 11408353
    Abstract: A gas turbine engine includes a plural spool assembly including a first spool and a second spool. The engine also includes an accessory configured to change between a motor mode and a generator mode and a transmission configured to transmit mechanical power between the accessory and at least one of the first spool and the second spool. The transmission, when the accessory is in the generator mode, is configured to transmit mechanical power from the first spool to the accessory for generating electric power at the accessory. The transmission, when the accessory is in the motor mode, is configured to transmit mechanical power from the accessory to the second spool.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 9, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: David K Jan, Christopher Zollars
  • Patent number: 11293292
    Abstract: A gas turbine engine includes a compressor section and a combustion section with a scroll, a scroll baffle, a combustor, and a combustor case. The scroll defines an interior scroll flow path. The scroll baffle surrounds the scroll to define a scroll cooling passage. The combustor case surrounds the combustor and the scroll baffle to define a collector space. Moreover, the engine includes a turbine section with a turbine rotor and a turbine rotor blade shroud that includes a shroud cooling passage. The compressor flow path is fluidly connected to the scroll for cooling the scroll. Also, the scroll cooling passage is fluidly connected to the shroud cooling passage for cooling the turbine rotor blade shroud. Furthermore, the shroud cooling passage is fluidly connected to the collector space. Flow from the collector space flows into the combustor, along the interior scroll flow path, toward the turbine rotor.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: April 5, 2022
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K. Jan, Mark Matwey
  • Publication number: 20200362768
    Abstract: A gas turbine engine with a compressor supplying compressed air. A combustor receives the compressed air and fuel and generates a flow of combusted gas. A turbine receives a core flow of the combusted gas to rotate a turbine rotor. A turbine inlet nozzle directs the combusted gas to the turbine rotor. Vanes are disposed in the turbine inlet nozzle and rotate to vary a flow area through which the core flow passes. The vanes adjust a pressure ratio of the gas turbine engine to compensate for changing operational requirements of the gas turbine engine by rotating to positions matching the changing operational requirements.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David K. Jan, Dietmar Giebert, Thomas G. Cunningham, JR.
  • Publication number: 20200353577
    Abstract: Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Kahrs, Daniel C. Crites, Jude Miller, Steve Halfmann, Jason Smoke, Ardeshir Riahi, David K. Jan
  • Publication number: 20200309036
    Abstract: A gas turbine engine includes a plural spool assembly including a first spool and a second spool. The engine also includes an accessory configured to change between a motor mode and a generator mode and a transmission configured to transmit mechanical power between the accessory and at least one of the first spool and the second spool. The transmission, when the accessory is in the generator mode, is configured to transmit mechanical power from the first spool to the accessory for generating electric power at the accessory. The transmission, when the accessory is in the motor mode, is configured to transmit mechanical power from the accessory to the second spool.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David K Jan, Christopher Zollars
  • Patent number: 10751843
    Abstract: Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 25, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Kahrs, Daniel C. Crites, Jude Miller, Steve Halfmann, Jason Smoke, Ardeshir Riahi, David K. Jan
  • Publication number: 20200231288
    Abstract: A system for providing compressed air to pneumatic loads in a vehicle such as an aircraft is disclosed. The system may include a gas turbine engine having; a) an engine compressor with an air inlet coupled to an interior of a cabin of the vehicle; and b) a load compressor coupled to the gas turbine engine having a compressed air outlet coupled to one or more pneumatic loads of the vehicle. One or more electrically-driven cabin air compressors (CACs) have compressed air outlets coupled to the one or more pneumatic loads.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: Eric Blumer, David K Jan, Cristian Anghel
  • Publication number: 20200182471
    Abstract: A gas turbine engine includes a compressor section and a combustion section with a scroll, a scroll baffle, a combustor, and a combustor case. The scroll defines an interior scroll flow path. The scroll baffle surrounds the scroll to define a scroll cooling passage. The combustor case surrounds the combustor and the scroll baffle to define a collector space. Moreover, the engine includes a turbine section with a turbine rotor and a turbine rotor blade shroud that includes a shroud cooling passage. The compressor flow path is fluidly connected to the scroll for cooling the scroll. Also, the scroll cooling passage is fluidly connected to the shroud cooling passage for cooling the turbine rotor blade shroud. Furthermore, the shroud cooling passage is fluidly connected to the collector space. Flow from the collector space flows into the combustor, along the interior scroll flow path, toward the turbine rotor.
    Type: Application
    Filed: January 7, 2020
    Publication date: June 11, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K. Jan, Mark Matwey
  • Patent number: 10661907
    Abstract: A system for providing compressed air to pneumatic loads in a vehicle such as an aircraft, the system includes a gas turbine engine having; a) an engine compressor with an air inlet coupled to an interior of a cabin of the vehicle; and b) a load compressor coupled to the gas turbine engine having a compressed air outlet coupled to one or more pneumatic loads of the vehicle. One or more electrically driven cabin air compressors (CAC) have compressed air outlets coupled to the one or more pneumatic loads.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 26, 2020
    Assignee: Honeywell International Inc.
    Inventors: Eric Blumer, David K Jan, Cristian Anghel
  • Patent number: 10655859
    Abstract: A gas turbine engine includes a compressor section and a combustion section with a scroll, a scroll baffle, a combustor, and a combustor case. The scroll defines an interior scroll flow path. The scroll baffle surrounds the scroll to define a scroll cooling passage. The combustor case surrounds the combustor and the scroll baffle to define a collector space. Moreover, the engine includes a turbine section with a turbine rotor and a turbine rotor blade shroud that includes a shroud cooling passage. The compressor flow path is fluidly connected to the scroll for cooling the scroll. Also, the scroll cooling passage is fluidly connected to the shroud cooling passage for cooling the turbine rotor blade shroud. Furthermore, the shroud cooling passage is fluidly connected to the collector space. Flow from the collector space flows into the combustor, along the interior scroll flow path, toward the turbine rotor.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 19, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K. Jan, Mark Matwey
  • Publication number: 20200095930
    Abstract: A variable gear ratio gas turbine engine system includes a planetary gear set, a gas turbine engine, an electric machine, and a controller. The gas turbine engine includes at least a low-pressure compressor, a high-pressure compressor, a combustor, a high-pressure turbine, and a low-pressure turbine. The low-pressure turbine is coupled to the low-pressure compressor via the planetary gear set. The electric machine is coupled to the planetary gear set and its rotational speed is used, at least in part, to vary the gear ratio of the planetary gear set. The controller is in operable communication with the gas turbine engine and the electric machine and is configured to control: the low-pressure turbine to rotate at a substantially constant speed and the rotational speed of the electric machine to thereby vary the gear ratio of the planetary gear set, whereby the speed at which the low-pressure compressor rotates is also varied.
    Type: Application
    Filed: September 20, 2018
    Publication date: March 26, 2020
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Eric Blumer, David K. Jan
  • Patent number: 10399176
    Abstract: Dual alloy turbine rotors and methods for manufacturing the same are provided. The dual alloy turbine rotor comprises an assembled blade ring and a hub bonded to the assembled blade ring. The assembled blade ring comprises a first alloy selected from the group consisting of a single crystal alloy, a directionally solidified alloy, or an equi-axed alloy. The hub comprises a second alloy. The method comprises positioning a hub within a blade ring to define an interface between the hub and the blade ring. The interface is a non-contacting interface or a contacting interface. The interface is enclosed by a pair of diaphragms. The interface is vacuum sealed. The blade ring is bonded to the hub after the vacuum sealing step.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: September 3, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Amandine Miner, David K. Jan, Don Mittendorf, Jason Smoke
  • Patent number: 10294804
    Abstract: Dual alloy Gas Turbine Engine (GTE) rotors and method for producing GTE rotors are provided. In one embodiment, the method include includes arranging bladed pieces in an annular grouping or ring formation such that shank-to-shank junctions are formed between circumferentially-adjacent bladed pieces. A first or bonding alloy is deposited along the shank-to-shank junctions utilizing a localized fusion deposition process to produce a plurality of alloy-filled joints, which join the bladed pieces in a bonded blade ring. The bonding alloy is preferably selected to have a ductility higher than and a melt point lower than the alloy from which the bladed pieces are produced. After deposition of the first alloy and formation of the alloy-filled joints, a hub disk is inserted into the central opening of the bonded blade ring. The hub disk and blade ring are then bonded utilizing, for example, a Hot Isostatic Pressing process.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 21, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, Eric Blumer, David K. Jan, Robbie Joseph Adams, Harry Lester Kington
  • Patent number: 10260355
    Abstract: A turbine blade and a radial turbine having at least one blade is provided. The turbine blade includes a trailing edge and a leading edge opposite the trailing edge. The turbine blade also includes a cooling passage defined internally within the turbine blade. The cooling passage is in fluid communication with a source of cooling fluid via a single inlet to receive a cooling fluid. The cooling passage diverges at a first point downstream from the single inlet into at least two branches that extend along the at least one blade from the first point to a second point near a tip of the leading edge and the cooling passage converges at the second point.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: April 16, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K Jan, Amandine Miner, Deanna Pinar Chase, Michael Kahrs, Lorenzo Crosatti
  • Publication number: 20190001448
    Abstract: Turbine wheels, turbine engines, and methods of fabricating the turbine wheels are provided. An exemplary method includes fabricating a turbine wheel that includes a rotor disk and a plurality of turbine blades operatively connected to the rotor disk through a blade mount. The method includes locating a cooling passage within a blade mount preliminary configuration and a cooling inlet on a surface of the blade mount preliminary configuration. A rotor disk bonding surface geometry and a blade mount bonding surface geometry are designed based upon a stress analysis of the turbine wheel and locations of the cooling passage and cooling inlet. A rotor disk production configuration and a blade mount production configuration are generated based upon the preliminary configurations. A blade mount and a rotor disk are formed based upon the production configurations. A blade ring including a plurality of blade mounts is formed and bonded to the rotor disk.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michael Kahrs, Daniel C. Crites, Jude Miller, Steve Halfmann, Jason Smoke, Ardeshir Riahi, David K. Jan
  • Patent number: 10036254
    Abstract: Dual alloy bladed rotors are provided, as are methods for manufacturing dual alloy bladed rotors. In one embodiment, the method includes arranging bladed pieces in a ring formation such that contiguous bladed pieces contact along shank-to-shank bonding interfaces. The ring formation is positioned around a hub disk, which is contacted by the bladed pieces along a shank-to-hub bonding interface. A metallic sealing material is deposited between contiguous bladed pieces utilizing, for example, a laser welding process to produce an annular seal around the ring formation. A hermetic cavity is then formed, which is circumferentially bounded by the annular seal and which encloses the shank-to-shank and shank-to-hub bonding interface. Afterwards, a Hot Isostatic Pressing process is performed during which the ring formation and the hub disk are exposed to elevated pressures external to the hermetic cavity sufficient to diffusion bond the shank-to-shank and shank-to-hub bonding interface.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 31, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K. Jan, Don Mittendorf, Brent Ludwig, Amandine Miner, Deanna Pinar Chase
  • Patent number: 10030542
    Abstract: Compliant coupling systems and methods are provided for coupling a shroud to an engine casing. The complaint coupling system includes a retaining ring adapted to be positioned adjacent to the shroud and adapted to be coupled to the engine casing. The retaining ring defines a coupling channel about a circumference of the retaining ring and at least one notch that interrupts the coupling channel. The complaint coupling system also includes a first clip received within the coupling channel. The first clip has a biasing portion that extends into a space defined by the at least one notch, and the biasing portion is adapted to contact the shroud. The complaint coupling system includes a second clip received within the coupling channel. The second clip has a bumper portion that extends into the spaced defined by the at least one notch, and the bumper portion is adapted to contact the shroud.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 24, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Ed Zurmehly, David R. Waldman, Deanna Pinar Chase, David K Jan, Gregory Ockenfels, Alonso Peralta-Duran
  • Publication number: 20180195729
    Abstract: A gas turbine engine includes a compressor section and a combustion section with a scroll, a scroll baffle, a combustor, and a combustor case. The scroll defines an interior scroll flow path. The scroll baffle surrounds the scroll to define a scroll cooling passage. The combustor case surrounds the combustor and the scroll baffle to define a collector space. Moreover, the engine includes a turbine section with a turbine rotor and a turbine rotor blade shroud that includes a shroud cooling passage. The compressor flow path is fluidly connected to the scroll for cooling the scroll. Also, the scroll cooling passage is fluidly connected to the shroud cooling passage for cooling the turbine rotor blade shroud. Furthermore, the shroud cooling passage is fluidly connected to the collector space. Flow from the collector space flows into the combustor, along the interior scroll flow path, toward the turbine rotor.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 12, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jason Smoke, David K. Jan, Mark Matwey
  • Publication number: 20180134396
    Abstract: A system for providing compressed air to pneumatic loads in a vehicle such as an aircraft, the system includes a gas turbine engine having; a) an engine compressor with an air inlet coupled to an interior of a cabin of the vehicle; and b) a load compressor coupled to the gas turbine engine having a compressed air outlet coupled to one or more pneumatic loads of the vehicle. One or more electrically driven cabin air compressors (CAC) have compressed air outlets coupled to the one or more pneumatic loads.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 17, 2018
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Eric Blumer, David K. Jan, Cristian Anghel