Patents by Inventor David Kunst

David Kunst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7636246
    Abstract: A start-up time accelerator is described for a switch controller that controls turning on or off a switch in a switching regulator. The start-up time accelerator uses the switch as a current amplifier and provides the amplified current to a capacitor using a current amplification path. In one example, the capacitor provides the bias voltage to a switch controller for the switch. Providing an amplified current to the capacitor accelerates the rate at which the bias voltage increases and reduces the time until the bias voltage reaches the turn-on threshold voltage of the switch controller. After the turn-on threshold voltage of the switch controller is reached, a second path is enabled for current to and from the capacitor and the capacitor provides the bias voltage to the switch controller until a voltage from an output voltage terminal is sufficiently high to provide the bias voltage for the switch controller through an auxiliary winding of a transformer.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: December 22, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Zhibo Tao, David Kunst
  • Publication number: 20090295349
    Abstract: A flyback converter includes a controller integrated circuit (IC) housed in an IC package with only three terminals. The controller IC is grounded through a ground terminal. A feedback signal is received onto a power terminal. The feedback signal powers the controller IC and is derived from a voltage across an auxiliary inductor of the flyback converter. A switch terminal is coupled to an inductor switch that is turned on by a switch control signal having a frequency and a pulse width. The inductor switch controls the current that flows through a primary inductor of the flyback converter. A switch signal is received onto the switch terminal and is used to generate the inductor switch control signal. The controller IC adjusts the frequency in a constant current mode such that output current remains constant and adjusts the pulse width in a constant voltage mode such that output voltage remains constant.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Zhibo Tao, David Kunst, Steven Huyah
  • Publication number: 20090295348
    Abstract: A flyback converter includes a controller integrated circuit (IC) housed in an IC package with only three terminals. An inexpensive TO-92 transistor package can be used. A switch terminal is coupled to an inductor switch that is turned on by a switch control signal having a frequency and a pulse width. The inductor switch controls the current that flows through a primary inductor of the flyback converter. The controller IC adjusts the frequency in a constant current mode such that output current remains constant and adjusts the pulse width in a constant voltage mode such that output voltage remains constant. A power terminal receives a feedback signal that is derived from a voltage across an auxiliary inductor of the flyback converter. The feedback signal provides power to the controller IC and is also used to generate the switch control signal. The controller IC is grounded through a ground terminal.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Zhibo Tao, David Kunst, Steven Huynh
  • Publication number: 20090230550
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: May 19, 2009
    Publication date: September 17, 2009
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7581198
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end-application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, the physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Grant
    Filed: October 7, 2006
    Date of Patent: August 25, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20090207636
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 20, 2009
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20090132987
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: January 3, 2009
    Publication date: May 21, 2009
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7522431
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 21, 2009
    Assignee: Active-Semi International, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20090091953
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: December 3, 2008
    Publication date: April 9, 2009
    Inventors: Steven Huynh, Matthew Grant, david Kunst, Zhibo Tao
  • Publication number: 20090040793
    Abstract: A start-up time accelerator is described for a switch controller that controls turning on or off a switch in a switching regulator. The start-up time accelerator uses the switch as a current amplifier and provides the amplified current to a capacitor using a current amplification path. In one example, the capacitor provides the bias voltage to a switch controller for the switch. Providing an amplified current to the capacitor accelerates the rate at which the bias voltage increases and reduces the time until the bias voltage reaches the turn-on threshold voltage of the switch controller. After the turn-on threshold voltage of the switch controller is reached, a second path is enabled for current to and from the capacitor and the capacitor provides the bias voltage to the switch controller until a voltage from an output voltage terminal is sufficiently high to provide the bias voltage for the switch controller through an auxiliary winding of a transformer.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 12, 2009
    Inventors: Steven Huynh, Zhibo Tao, David Kunst
  • Publication number: 20080259650
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls a switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the frequency and pulse width controls the peak of the inductor current.
    Type: Application
    Filed: July 26, 2007
    Publication date: October 23, 2008
    Inventors: Steven Huynh, Matthew Grant, David Kunst
  • Publication number: 20080259651
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: July 31, 2007
    Publication date: October 23, 2008
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20080259652
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls a switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the frequency and pulse width controls the peak of the inductor current.
    Type: Application
    Filed: August 14, 2007
    Publication date: October 23, 2008
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20080259654
    Abstract: A cord correction circuit in a primary-side-controlled flyback converter compensates for the loss of output voltage caused by the resistance of the charger cord. In one embodiment, a correction voltage is subtracted from a feedback voltage received from a primary-side auxiliary inductor. A pre-amplifier then compares a reference voltage to the corrected feedback voltage. In another embodiment, the correction voltage is summed with the reference voltage, and the pre-amplifier compares the feedback voltage to the corrected reference voltage. The difference between the voltages on the input leads of the pre-amplifier is used to increase the output voltage to compensate for the voltage lost through the charger cord. The flyback converter also has a comparing circuit and a control loop that maintain the peak level of current flowing through the primary inductor of the converter. Adjusting the frequency and pulse width of an inductor switch signal controls the converter output current.
    Type: Application
    Filed: August 28, 2007
    Publication date: October 23, 2008
    Applicant: Active-Semi International, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Patent number: 7423247
    Abstract: An automatic power control system provides a control signal that regulates the output power of at least one laser diode. Coarse adjustment of the control signal is provided by a first means, preferably a digital variable resistor, while fine adjustment and compensation is provided by a second means, preferably by a digital-to-analog converter that receives an input signal proportional to a sensed control system parameter. The control system includes an operational amplifier having a first input coupled to sense output power, and a second input coupled to a DAC to provide finer resolution control. Memory can store system parameter or system parameter variations that can be coupled to the DAC and/or variable resistor to enhance system stability over ambient variations.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: September 9, 2008
    Assignee: Micrel, Incorporated
    Inventors: David Kunst, Steven Martinez, Robert James Lewandowski, Peter Chambers, Joseph James Judkins, Luis Torres, Thomas A. Lindsay
  • Publication number: 20080192515
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: April 23, 2007
    Publication date: August 14, 2008
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20080086710
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end-application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard-IC fabrication process. In many implementations, the physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: October 7, 2006
    Publication date: April 10, 2008
    Applicant: Active-Semi International Inc.
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20080083936
    Abstract: A method of constructing an integrated circuit involves selecting modular tiles and then generating a functional circuit layout using the tiles. Modular tiles that perform predetermined functions and that have approximately the same length and width dimensions are selected from a library of validated tiles. The tiles have input-output terminals embedded in their upper active layers. A functional circuit layout for the integrated circuit is generated using the tiles. In many implementations, the physical layout of the integrated circuit does not include the step of routing. Then an interconnect layer is added over the functional circuitry of the tiles and connects the input-output terminals to bond pads located at the perimeter of the functional circuit layout. Chip data corresponding to the functional circuit layout is generated, and then mask reticles corresponding to the chip data are generated. The integrated circuit is formed on a wafer based on the mask reticles.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 10, 2008
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20070114361
    Abstract: An automatic power control system provides a control signal that regulates the output power of at least one laser diode. Coarse adjustment of the control signal is provided by a first means, preferably a digital variable resistor, while fine adjustment and compensation is provided by a second means, preferably by a digital-to-analog converter that receives an input signal proportional to a sensed control system parameter. The control system includes an operational amplifier having a first input coupled to sense output power, and a second input coupled to a DAC to provide finer resolution control. Memory can store system parameter or system parameter variations that can be coupled to the DAC and/or variable resistor to enhance system stability over ambient variations.
    Type: Application
    Filed: January 23, 2007
    Publication date: May 24, 2007
    Inventors: David Kunst, Steven Martinez, Robert Lewandowski, Peter Chambers, Joseph Judkins, Luis Torres, Tom Lindsay
  • Patent number: 7166826
    Abstract: An automatic power control system provides a control signal that regulates the output power of at least one laser diode. Coarse adjustment of the control signal is provided by a first means, preferably a digital variable resistor, while fine adjustment and compensation is provided by a second means, preferably by a digital-to-analog converter that receives an input signal proportional to a sensed control system parameter. The control system includes an operational amplifier having a first input coupled to sense output power, and a second input coupled to a DAC to provide finer resolution control. Memory can store system parameter or system parameter variations that can be coupled to the DAC and/or variable resistor to enhance system stability over ambient variations.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: January 23, 2007
    Assignees: Micrel, Incorporated, Stratos Lightware, Inc.
    Inventors: David Kunst, Steven Martinez, Robert James Lewandowski, Peter Chambers, Joseph James Judkins, III, Luis Torres, Tom Lindsay