Patents by Inventor David M. Lynn

David M. Lynn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8834918
    Abstract: A composition for delivery of a molecule into a cell is provided. The composition includes a protein transduction domain that is conjugated to the molecule which is incorporated into a multilayered film. Preferably, the protein transduction domain is a cationic protein transduction domain. More preferably, the cationic protein transduction domain is nonaarginine, and the multilayered film includes polyelectrolyte multilayers. When the composition is presented to a cell, the multilayered film dissolves or erodes in physiological media, and the molecule is delivered into the cell.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: September 16, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Ronald T. Raines, Christopher M. Jewell, Stephen M. Fuchs, Ryan M. Flessner
  • Patent number: 8734851
    Abstract: The present invention provides implantable medical devices coated with polyelectrolyte assemblies that are fabricated by layer-by-layer deposition of nucleic acid and polycation. Such devices facilitate the local delivery of a nucleic acid contained in the polyelectrolyte assembly into a cell or tissue at an implantation site. Also provided are methods of fabricating and using implantable medical devices according to the invention.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: May 27, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Jingtao Zhang, Christopher M. Jewell, Nathaniel J. Fredin
  • Patent number: 8716422
    Abstract: Materials and Methods for the generation of polyelectrolyte multilayers that can erode to release cationic components. The multilayers comprise layers that contain one or more cations and one or more charge-dynamic anionic polymers. Charge-dynamic anionic polymers contain side chains having removable functional groups. Removal of the functional groups results in a change in the net change in the charge of the polymer which can disrupt interactions between cations and the anionic polymers and facilitate release of cations.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 6, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xianghui Liu, Jingtao Zhang, David M. Lynn
  • Publication number: 20140094399
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Application
    Filed: September 17, 2013
    Publication date: April 3, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David A. Putnam, Mansoor M. Amiji, Daniel Griffith Anderson
  • Publication number: 20130344563
    Abstract: A class of anionic oligomers and polymers that function for inhibition of nucleases, particularly RNase. Specific inhibitors include mixtures of oligomers of vinyl sulfate. Methods for inhibition or inactivation of one or more nucleases in vitro which comprises the step of contacting the one or more nucleases in a biological medium with one or more of the anionic oligomeric or polymeric inhibitors of this invention. Kits for carrying out a biological procedure, biological reaction and/or a biological assay containing one or more inhibitors of this invention. The use of oligomers and/or polymers of this invention as additives in buffers or reagents. The inhibitors of the invention can also be attached to surfaces to provide for removal of nucleases from media, solutions or other liquids in contact with the solid.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 26, 2013
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Ronald T. RAINES, Bryan D. Smith, Matthew B. Soellner, David M. Lynn
  • Patent number: 8574420
    Abstract: Multilayered films, particularly ultrathin multilayered films comprising cationic polymers which are useful for controlled release of anionic species, particularly for controlled release of nucleic acids. The multilayer films herein are useful for temporal controlled released of anionic species, particularly one or more anionic peptides, proteins, nucleic acids or other anionic biological agents. In one aspect, the invention relates to multilayer films which release anionic species (anions) with separate and/or distinct release profiles, particularly wherein the anions are one or more anionic peptides, proteins or nucleic acids or other anionic biological agents.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 5, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Jingtao Zhang, Xianghui Liu
  • Patent number: 8557231
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: October 15, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David Putnam, Mansoor M. Amiji, Daniel G. Anderson
  • Patent number: 8524368
    Abstract: The present invention provides dynamic charge state cationic polymers that are useful for delivery of anionic molecules. The dynamic charge state cationic polymers are designed to have cationic charge densities that decrease by removal of removable functional groups from the polymers. The present invention also provides interpolyelectrolyte complexes containing the polymers complexed to a polyanion. Methods for using the interpolyelectrolyte complexes to deliver anionic compounds are also provided.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 3, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Adam D. Miller
  • Patent number: 8460684
    Abstract: A class of anionic oligomers and polymers that function for inhibition of nucleases, particularly RNase. Specific inhibitors include mixtures of oligomers of vinyl sulfate. Methods for inhibition or inactivation of one or more nucleases in vitro which comprises the step of contacting the one or more nucleases in a biological medium with one or more of the anionic oligomeric or polymeric inhibitors of this invention. Kits for carrying out a biological procedure, biological reaction and/or a biological assay containing one or more inhibitors of this invention. The use of oligomers and/or polymers of this invention as additives in buffers or reagents. The inhibitors of the invention can also be attached to surfaces to provide for removal of nucleases from media, solutions or other liquids in contact with the solid.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: June 11, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ronald T. Raines, Bryan D. Smith, Matthew B. Soellner, David M. Lynn
  • Publication number: 20130136782
    Abstract: Compounds described herein inhibit biofilm formation or disperse pre-formed biofilms of Gram-negative bacteria. Biofilm-inhibitory compounds can be encapsulated or contained in a polymer matrix for controlled release. Coatings, films, multilayer films, hydrogels, microspheres and nanospheres as well as pharmaceutical compositions and disinfecting compositions containing biofilm-inhibitory compounds are also provided. Methods for inhibiting formation of biofilms or dispersing already formed biofilms are provided. Methods for treating infections of gram-negative bacteria which form biofilms, particularly those of Pseudomonas and more particularly P. aeruginosa.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 30, 2013
    Inventors: Helen BLACKWELL, Reto Frei, Anthony Breitbach, David M. Lynn, Adam H. Broderick
  • Publication number: 20130122055
    Abstract: Materials and Methods for the generation of polyelectrolyte multilayers that can erode to release cationic components. The multilayers comprise layers that contain one or more cations and one or more charge-dynamic anionic polymers. Charge-dynamic anionic polymers contain side chains having removable functional groups. Removal of the functional groups results in a change in the net change in the charge of the polymer which can disrupt interactions between cations and the anionic polymers and facilitate release of cations.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 16, 2013
    Inventors: Xianghui LIU, Jingtao Zhang, David M. Lynn
  • Patent number: 8324333
    Abstract: Materials and methods for the generation of polyelectrolyte multilayers that can erode to release cationic components. The multilayers comprise layers that contain one or more cations and one or more charge-dynamic anionic polymers. Charge-dynamic anionic polymers contain side chains having removable functional groups. Removal of the functional groups results in a change in the net change in the charge of the polymer which can disrupt interactions between cations and the anionic polymers and facilitate release of cations.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: December 4, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xianghui Liu, Jingtao Zhang, David M. Lynn
  • Patent number: 8287849
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: October 16, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David Putnam, Mansoor M. Amiji, Daniel G. Anderson
  • Publication number: 20120134926
    Abstract: The present invention provides dynamic charge state cationic polymers that are useful for delivery of anionic molecules. The dynamic charge state cationic polymers are designed to have cationic charge densities that decrease by removal of removable functional groups from the polymers. The present invention also provides interpolyelectrolyte complexes containing the polymers complexed to a polyanion. Methods for using the interpolyelectrolyte complexes to deliver anionic compounds are also provided.
    Type: Application
    Filed: December 14, 2011
    Publication date: May 31, 2012
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Adam D. Miller
  • Publication number: 20120065358
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, David M. Lynn, David A. Putnam, Mansoor M. Amiji, Daniel G. Anderson
  • Publication number: 20120065616
    Abstract: Multilayered films, particularly ultrathin multilayered films comprising cationic polymers which are useful for controlled release of anionic species, particularly for controlled release of nucleic acids. The multilayer films herein are useful for temporal controlled released of anionic species, particularly one or more anionic peptides, proteins, nucleic acids or other anionic biological agents. In one aspect, the invention relates to multilayer films which release anionic species (anions) with separate and/or distinct release profiles, particularly wherein the anions are one or more anionic peptides, proteins or nucleic acids or other anionic biological agents.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: David M. Lynn, Jingtao Zhang, Xianghui Liu
  • Patent number: 8105652
    Abstract: A decomposable thin film comprising a plurality of polyelectrolyte layers of alternating charge, wherein decomposition of the thin film is characterized by degradation of at least a portion of the polyelectrolyte layers.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: January 31, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Kris C. Wood, Helen F. Chuang, Robert D. Batten, David M. Lynn, Paula T. Hammond Cunningham
  • Patent number: 8097277
    Abstract: The present invention provides dynamic charge state cationic polymers that are useful for delivery of anionic molecules. The dynamic charge state cationic polymers are designed to have cationic charge densities that decrease by removal of removable functional groups from the polymers. The present invention also provides interpolyelectrolyte complexes containing the polymers complexed to a polyanion. Methods for using the interpolyelectrolyte complexes to deliver anionic compounds are also provided.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 17, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David M. Lynn, Adam D. Miller
  • Publication number: 20110306142
    Abstract: Devices and methods for immobilizing micrometer sized liquid domains onto a chemically functionalized substrate surface are disclosed. A multifunctional polymer is adsorbed at the surface interface of the liquid microdomains, and the liquid microdomains are immobilized by covalent bonding or non-covalent forces such as electrostatic attraction between the adsorbed multifunctional polymer and the functionalized substrate surface.
    Type: Application
    Filed: April 15, 2011
    Publication date: December 15, 2011
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: David M. Lynn, Nicholas L. Abbott, Maren E. Buck, Michael I. Kinsinger
  • Patent number: RE43612
    Abstract: Poly(?-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings. A system for preparing and screening polymers in parallel using semi-automated robotic fluid delivery systems is also provided.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 28, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel Griffith Anderson, David M. Lynn, Akin Akinc, Robert S. Langer