Patents by Inventor David M. Williamson

David M. Williamson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10359618
    Abstract: Optical objective dimensioned to operate as part of intravascular endoscope probe and including first and second groups of lens elements. The first group of lens elements includes a first meniscus lens with a negative dioptric power and a first optical doublet. The second group of lens elements include a sequence of second, third, and fourth optical doublets and a second meniscus lens with a positive dioptric power. At least one of the first and second groups of lens elements includes an aspheric refractive surface, thereby reducing distortion down to under 1% for field angles up to at least 40 degrees. Methods for using same, including embodiments with such multiple optical objectives used for acquisition of images of targets with fixed FOV and image fusion, providing enhanced imaging data for target analysis.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 23, 2019
    Assignee: NIKON CORPORATION
    Inventors: David M. Williamson, Brian L. Stamper
  • Patent number: 10295911
    Abstract: An extreme ultraviolet lithography system (10) that creates a pattern (230) having a plurality of densely packed parallel lines (232) on a workpiece (22) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13A) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22); and a pattern blind assembly (26) positioned in a beam path (55) of the extreme ultraviolet beam (13A). The pattern blind assembly (26) shapes the extreme ultraviolet beam (13A) so that an exposure field (28) on the workpiece (22) has a polygonal shape.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 21, 2019
    Assignee: NIKON CORPORATION
    Inventors: Michael B. Binnard, Daniel Gene Smith, David M. Williamson
  • Publication number: 20190113723
    Abstract: A catoptric system for EUV lithography includes six freeform reflective surfaces that are specified based on fringe Zernike polynomials. Each of the surfaces is tilted and/or decentered in a meridian plane and with respect to a common axis so that image and object planes are parallel. Rectangular fields can be imaged with image space numerical aperture of at least 0.5.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 18, 2019
    Applicant: Nikon Corporation
    Inventor: David M. Williamson
  • Patent number: 10139610
    Abstract: A catadioptric microscope objective color-corrected for any wavelength in 190 nm to 1000 nm operational range and containing primary spherical front-surface mirror devoid of a through-hole and rear-surface plane-parallel mirror, each of which mirrors has a corresponding reflective annular coating defining an aperture formed in such coating coaxially with the optical axis. The objective, devoid of a Mangin element, is configured such that for any optical field with a diameter smaller than about 50 microns the Strehl ratio is no lower than 0.0781, and/or longitudinal spherical aberration is no larger than 0.0008 mm, and/or the astigmatism is smaller than 0.0005 mm, and/or distortion is smaller than 0.012 percent within the operational range.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: November 27, 2018
    Assignee: NIKON CORPORATION
    Inventor: David M. Williamson
  • Publication number: 20180275387
    Abstract: A catadioptric microscope objective color-corrected for any wavelength in 190 nm to 1000 nm operational range and containing primary spherical front-surface mirror devoid of a through-hole and rear-surface plane-parallel mirror, each of which mirrors has a corresponding reflective annular coating defining an aperture formed in such coating coaxially with the optical axis. The objective, devoid of a Mangin element, is configured such that for any optical field with a diameter smaller than about 50 microns the Strehl ratio is no lower than 0.0781, and/or longitudinal spherical aberration is no larger than 0.0008 mm, and/or the astigmatism is smaller than 0.0005 mm, and/or distortion is smaller than 0.012 percent within the operational range.
    Type: Application
    Filed: October 25, 2016
    Publication date: September 27, 2018
    Inventor: David M. Williamson
  • Publication number: 20170336720
    Abstract: An extreme ultraviolet lithography system (10) that creates a pattern (230) having a plurality of densely packed parallel lines (232) on a workpiece (22) includes a patterning element (16); an EUV illumination system (12) that directs an extreme ultraviolet beam (13A) at the patterning element (16); a projection optical assembly (18) that directs the extreme ultraviolet beam diffracted off of the patterning element (16) at the workpiece (22); and a pattern blind assembly (26) positioned in a beam path (55) of the extreme ultraviolet beam (13A). The pattern blind assembly (26) shapes the extreme ultraviolet beam (13A) so that an exposure field (28) on the workpiece (22) has a polygonal shape.
    Type: Application
    Filed: June 21, 2017
    Publication date: November 23, 2017
    Inventors: Michael B. Binnard, Daniel Gene Smith, David M. Williamson
  • Publication number: 20170336716
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern: an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard
  • Publication number: 20170336715
    Abstract: Extreme ultra-violet (EUV) lithography ruling engine specifically configured to print one-dimensional lines on a target workpiece includes source of EUV radiation; a pattern-source defining 1D pattern; an illumination unit (IU) configured to irradiate the pattern-source; and projection optics (PO) configured to optically image, with a reduction factor N>1, the 1D pattern on image surface that is optically-conjugate to the 1D pattern. Irradiation of the pattern-source can be on-axis or off-axis. While 1D pattern has first spatial frequency, its optical image has second spatial frequency that is at least twice the first spatial frequency. The pattern-source can be flat or curved. The IU may include a relay reflector. A PO's reflector may include multiple spatially-distinct reflecting elements aggregately forming such reflector. The engine is configured to not allow formation of optical image of any 2D pattern that has spatial resolution substantially equal to a pitch of the 1D pattern of the pattern-source.
    Type: Application
    Filed: May 18, 2017
    Publication date: November 23, 2017
    Inventors: Donis G. Flagello, David M. Williamson, Stephen P. Renwick, Daniel Gene Smith, Michael B. Binnard
  • Publication number: 20170307863
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 26, 2017
    Inventor: David M. Williamson
  • Publication number: 20170235120
    Abstract: Non-telecentric in image space optical objective dimensioned to operate as part of intravascular endoscope probe and including first and second groups of lens elements (separated by an aperture stop) each of which has negative optical power. The first group of lens elements includes a first meniscus lens with a positive dioptric power and a first optical doublet. The second group of lens elements includes a sequence of second and third optical doublets and a second meniscus lens that follows the third optical doublet. At least one of the first and second groups of lens elements includes an aspheric refractive surface, thereby reducing distortion down to under 0.25% for field angles up to at least 40 degrees.
    Type: Application
    Filed: February 6, 2017
    Publication date: August 17, 2017
    Inventor: David M. Williamson
  • Publication number: 20170199371
    Abstract: Optical objective dimensioned to operate as part of intravascular endoscope probe and including first and second groups of lens elements. The first group of lens elements includes a first meniscus lens with a negative dioptric power and a first optical doublet. The second group of lens elements include a sequence of second, third, and fourth optical doublets and a second meniscus lens with a positive dioptric power. At least one of the first and second groups of lens elements includes an aspheric refractive surface, thereby reducing distortion down to under 1% for field angles up to at least 40 degrees. Methods for using same, including embodiments with such multiple optical objectives used for acquisition of images of targets with fixed FOV and image fusion, providing enhanced imaging data for target analysis.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 13, 2017
    Inventors: David M. Williamson, Brian L. Stamper
  • Patent number: 9703085
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: July 11, 2017
    Assignee: Nikon Corporation
    Inventor: David M. Williamson
  • Patent number: 9638906
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 2, 2017
    Assignee: Nikon Corporation
    Inventor: David M. Williamson
  • Patent number: 9335159
    Abstract: An exemplary method involves, in a system comprising a tool that performs a task on a workpiece, a method for determining displacement of the workpiece relative to the tool. Respective displacements of loci of at least a region of the workpiece are mapped using a Goos-Hänchen-insensitive (GH-insensitive) displacement sensor to produce a first set of physical displacement data for the region. Also mapped are respective displacements, from the tool, of the loci using a GH sensitive sensor to produce a second set of optical displacement data for the region. Goodness of fit (GOF) is determined of the second set of data with the first set. According to the GOF, respective GH-correction (GHC) coefficients are determined for at least one locus of the region. When measuring displacement of the at least one locus in the region relative to the tool, the respective GHC coefficient is applied to the measured displacement to reduce an error that otherwise would be present in the measured displacement due to a GH effect.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: May 10, 2016
    Assignee: Nikon Corporation
    Inventors: Michael Sogard, Daniel G. Smith, David M. Williamson
  • Publication number: 20150146185
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 28, 2015
    Inventor: David M. Williamson
  • Publication number: 20150146283
    Abstract: Projection optical system for forming an image on a substrate and including an illumination relay lens and a projection lens each of which is a catadioptric system. The projection lens may include two portions in optical communication with one another, the first of which is dioptric and the second of which is catadioptric. In a specific case, the projection optical system satisfies 4 < ? ? I ? ? ? T ? < 30 , where ?I and ?T are magnifications of the first portion and the overall projection lens. Optionally, the projection lens may be structured to additionally satisfy 6 < ? ? II ? ? ? T ? < 20 , where ?II is a magnification of the second portion. A digital scanner including such projection optical system and operating with UV light having a spectral bandwidth on the order of 1 picometer. Method for forming an image with such projection optical system.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventor: David M. Williamson
  • Publication number: 20150015896
    Abstract: An exemplary method involves, in a system comprising a tool that performs a task on a workpiece, a method for determining displacement of the workpiece relative to the tool. Respective displacements of loci of at least a region of the workpiece are mapped using a Goos-Hänchen-insensitive (GH-insensitive) displacement sensor to produce a first set of physical displacement data for the region. Also mapped are respective displacements, from the tool, of the loci using a GH sensitive sensor to produce a second set of optical displacement data for the region. Goodness of fit (GOF) is determined of the second set of data with the first set. According to the GOF, respective GH-correction (GHC) coefficients are determined for at least one locus of the region. When measuring displacement of the at least one locus in the region relative to the tool, the respective GHC coefficient is applied to the measured displacement to reduce an error that otherwise would be present in the measured displacement due to a GH effect.
    Type: Application
    Filed: August 19, 2014
    Publication date: January 15, 2015
    Applicant: Nikon Corporation
    Inventors: Michael Sogard, Daniel G. Smith, David M. Williamson
  • Patent number: 8842296
    Abstract: An exemplary method involves, in a system comprising a tool that performs a task on a workpiece, a method for determining displacement of the workpiece relative to the tool. Respective displacements of loci of at least a region of the workpiece are mapped using a Goos-Hänchen-insensitive (GH-insensitive) displacement sensor to produce a first set of physical displacement data for the region. Also mapped are respective displacements, from the tool, of the loci using a GH sensitive sensor to produce a second set of optical displacement data for the region. Goodness of fit (GOF) is determined of the second set of data with the first set. According to the GOF, respective GH-correction (GHC) coefficients are determined for at least one locus of the region. When measuring displacement of the at least one locus in the region relative to the tool, the respective GHC coefficient is applied to the measured displacement to reduce an error that otherwise would be present in the measured displacement due to a GH effect.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 23, 2014
    Assignee: Nikon Corporation
    Inventors: Michael Sogard, Daniel G. Smith, David M. Williamson
  • Publication number: 20140218704
    Abstract: A catoptric system for EUV lithography includes six freeform reflective surfaces that are specified based on fringe Zernike polynomials. Each of the surfaces is tilted and/or decentered in a meridian plane and with respect to a common axis so that image and object planes are parallel. Rectangular fields can be imaged with image space numerical aperture of at least 0.5.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: Nikon Corporation
    Inventor: David M. Williamson
  • Patent number: 8705170
    Abstract: New and useful concepts for an imaging optical system configured to simultaneously image a reticle to a pair of imaging locations are provided, where the imaging optics comprise a pair of arms, each of which includes catadioptric imaging optics. In addition, the imaging optics are preferably designed to image a reticle simultaneously to the pair of imaging locations, at a numerical aperture of at least 1.3, and without obscuration of light by the imaging optics.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 22, 2014
    Assignee: Nikon Corporation
    Inventors: David M. Williamson, Michael B. Binnard, Douglas C. Watson