Patents by Inventor David Mathew Johnson

David Mathew Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160175874
    Abstract: The disclosed spray deposition systems and methods control the formation and dispensation of droplets during the atomization of a fluid. Such systems and methods generally can generate small quantities and droplets of a desired size of highly-viscous fluids and/or fluids having non-Newtonian properties or other complex rheologies using mechanical systems and processes with the option of further controlling the droplet size and/or the volume of droplets with various enhancements. The systems and methods stretch fluid between a fluid feed system and a surface and are able to form the controlled-volume of the droplets.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Victor Alfred Beck, David Mathew Johnson
  • Publication number: 20160175884
    Abstract: A method to fabricate hierarchical graded materials includes providing a reservoir of functionalized particles, mixing at least some of the functionalized particles using a mixer in the print head having a mixed fluid volume control on an order of a voxel to produce mixed functionalized particles, and actuating a print head to deposit the mixed functionalized particles on a substrate.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: JOHN STEVEN PASCHKEWITZ, GABRIEL IFTIME, VICTOR ALFRED BECK, DAVID MATHEW JOHNSON
  • Patent number: 9348231
    Abstract: A coating mechanism disposes a liquid (e.g., polymer) thin film onto a conveyor surface (e.g., roller or belt) that is moved by a suitable motor to convey the thin film into a precisely controlled gap (or nip) region where applied potentials generate an electric field that causes the liquid to undergo Electrohydrodynamic (EHD) patterning deformation, whereby the liquid forms patterned micro-scale features. A curing mechanism (e.g., a UV laser) is used to solidify (e.g., cross-link) the patterned liquid features inside or immediately after exiting the gap region, thereby forming micro-scale patterned structures that are either connected by an intervening web as part of a sheet, or separated into discrete micro-scale structures. Nanostructures (e.g., nanotubes or nanowires) disposed in the liquid become vertically oriented during the EHD patterning process. Segmented electrodes and patterned charges are utilized to provide digital patterning control.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 24, 2016
    Assignee: Palo Alto Research Center Incorporated
    Inventors: David Mathew Johnson, Armin R. Volkel, John Steven Paschkewitz
  • Publication number: 20160049900
    Abstract: A solar module system is coupled directly to a fixed structure either individually or collectively as an array. Universal mounting brackets attached to the back of each solar panel module each connect to one or more other brackets of adjacent solar panels and/or to mounting feet that anchor to the fixed structure. Mounting brackets interlock with mounting brackets on adjacent solar modules and include a flexible snap coupling mechanism including a locking feature to selectively flexibly connect to and disconnect from other mounting brackets of adjacent solar panels.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 18, 2016
    Inventors: Neil Goldberg, Troy Douglas Tyler, David Mathew Johnson
  • Publication number: 20160030010
    Abstract: Devices, systems, and methods for detecting estrus in subjects are provided. Devices include a housing configured for intravaginal/intrauterine deployment and retention and a sensor disposed in or on the housing, and are configured to use condition information sensed by the sensor to determine an estrus condition of the subject. Methods include deploying a device in the subject, sensing the condition information, and determining an estrus condition using the condition information. Systems include a device configured to communicate with a base station and/or with other implanted devices, which are located within a reception radius thereof, regarding the determined estrus condition.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David Mathew Johnson, Scott A. Uhland, Ramkumar Abhishek, Robert Thomas Krivacic, Martin Sheridan
  • Publication number: 20160030084
    Abstract: Devices, systems, and methods for delivering fluid are provided. Devices include a housing configured for intravaginal deployment and retention, at least one reservoir configured to contain a fluid, and a fluid dispensing mechanism configured to dispense the fluid past the cervix and to the uterus of the subject. Methods include intravaginally deploying and retaining a device in the subject, and dispensing the fluid from the device such that the fluid is driven past the cervix to the uterus of the subject.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David Mathew Johnson, Scott A. Uhland, Ramkumar Abhishek, Robert Thomas Krivacic, Martin Sheridan
  • Publication number: 20150367540
    Abstract: A system and method is provided for creating a structure including a vasculature network. A film deposition device is configured to dispense droplets onto a surface of a substrate to form a curable fugitive pre-patterned liquid film on the surface of the substrate. An electrohydrodynamic film patterning (EHD-FP) device has a patterned electrode structure formed to generate an electric field and to subject the film on the surface of the substrate to the electric field. The film thereby being formed by the EHD-FP into patterned features in response to being subjected to the electric field. Then a casting system is configured to cover the patterned features in an epoxy to form patterned structures, wherein the patterned structures comprise a fugitive vasculature structure.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: David Mathew Johnson, Corie Lynn Cobb, John Steven Paschkewitz
  • Publication number: 20150343477
    Abstract: Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament between diverging surfaces. The stretched fluid filament breaks into droplets that can be harvested to form a mist or aerosol. The aerosol creation systems can include one or more pairs of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid. Some aerosol creation systems can include multiple pairs of counter-rotating rollers that are positioned in a circular, oval, or linear pattern. The aerosol creation system with multiple pairs of counter-rotating rollers can generate mist is one or more directions and can be positioned between two concentric rings or linearly, among other configurations.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: DAVID MATHEW JOHNSON, VICTOR BECK
  • Publication number: 20150343468
    Abstract: Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament between diverging surfaces. The stretched fluid filament breaks into droplets that can be harvested to form a mist or aerosol. The aerosol creation systems can include one or more pairs of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid. Some aerosol creation systems can include multiple pairs of counter-rotating rollers that are positioned in a circular, oval, or linear pattern. The aerosol creation system with multiple pairs of counter-rotating rollers can generate mist is one or more directions and can be positioned between two concentric rings or linearly, among other configurations.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: DAVID MATHEW JOHNSON, VICTOR BECK
  • Publication number: 20150343407
    Abstract: Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament between diverging surfaces. The stretched fluid filament breaks into droplets that can be harvested to form a mist or aerosol. The aerosol creation systems can include one or more pairs of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid. Some aerosol creation systems can include multiple pairs of counter-rotating rollers that are positioned in a circular, oval, or linear pattern. The aerosol creation system with multiple pairs of counter-rotating rollers can generate mist is one or more directions and can be positioned between two concentric rings or linearly, among other configurations.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: DAVID MATHEW JOHNSON, VICTOR BECK
  • Publication number: 20150210009
    Abstract: Polymer spray deposition systems and methods are disclosed that can be used with a wide range of thermoplastic materials to produce high resolution objects having the complexity and structural integrity typically only achieved using more traditional manufacturing techniques, like injection molding processes. The polymeric spray deposition systems and methods use a spray generator that stretches the fluid between two diverging surfaces, such as two rollers or between two pistons. The stretched fluid breaks apart into a plurality of droplets and is guided through a delivery system, that can include an optional droplet size selector, and into a multi-nozzle array. The multi-nozzle array is controlled and directs the spray onto a target surface, thereby creating a three-dimensional object. The disclosed polymer spray deposition systems and methods can be used in three-dimensional print heads and printing techniques.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 30, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: DAVID MATHEW JOHNSON, ARMIN R. VOLKEL, VICTOR BECK, JOHN STEVEN PASCHKEWITZ
  • Publication number: 20150115057
    Abstract: Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament. The fluid filament is caused to break into droplets that can be harvested to form a mist or aerosol. Such a system for aerosol creation can include a pair of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: VICTOR BECK, DAVID MATHEW JOHNSON
  • Publication number: 20150119477
    Abstract: Aerosols can be created by filament stretching and breaking of Newtonian and non-Newtonian fluids by applying a strain to and stretching the fluid. The fluid is stretched along a strain pathway and forms a fluid filament. The fluid filament is caused to break into droplets that can be harvested to form a mist or aerosol. Such a system for aerosol creation can include a pair of counter-rotating rollers that are positioned adjacent to each other that stretch the fluid or a pair of pistons that move toward and away from each other to stretch the fluid.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: VICTOR BECK, DAVID MATHEW JOHNSON
  • Publication number: 20150022790
    Abstract: A coating mechanism disposes a liquid (e.g., polymer) thin film onto a conveyor surface (e.g., roller or belt) that is moved by a suitable motor to convey the thin film into a precisely controlled gap (or nip) region where applied potentials generate an electric field that causes the liquid to undergo Electrohydrodynamic (EHD) patterning deformation, whereby the liquid forms patterned micro-scale features. A curing mechanism (e.g., a UV laser) is used to solidify (e.g., cross-link) the patterned liquid features inside or immediately after exiting the gap region, thereby forming micro-scale patterned structures that are either connected by an intervening web as part of a sheet, or separated into discrete micro-scale structures. Nanostructures (e.g., nanotubes or nanowires) disposed in the liquid become vertically oriented during the EHD patterning process. Segmented electrodes and patterned charges are utilized to provide digital patterning control.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Inventors: David Mathew Johnson, Armin R. Volkel, John Steven Paschkewitz
  • Publication number: 20150021161
    Abstract: A liquid thin film is disposed on a conveyor surface (e.g., a roller or belt) that moves the thin film into a precisely controlled gap (or nip) region in which the liquid thin film is subjected to an electric field that causes the liquid to undergo Electrohydrodynamic (EHD) patterning deformation, whereby portions of the liquid thin film form patterned liquid features having a micro-scale patterned shape. A curing mechanism (e.g., a UV laser) is used to solidify (e.g., in the case of polymer thin films, cross-link) the patterned liquid inside or immediately after exiting the gap region. The patterned structures are either connected by an intervening web as part of a polymer sheet, or separated into discreet micro-scale structures. Nanostructures (e.g., nanotubes or nanowires) disposed in the polymer become vertically oriented during the EHD patterning process. Segmented electrodes and patterned charges are utilized to provide digital patterning control.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Inventors: David Mathew Johnson, Armin R. Volkel, John Steven Paschkewitz
  • Publication number: 20140262973
    Abstract: An assembly for a high output hydrodynamic separation unit includes, in one form, several components or parts. Top and bottom plates serve as caps for and distribute force through layers of separation channels. The compressive forces seal the channels and prevent leakage from the channels. An optional middle plate may also be provided to create smaller subsets of the layers of separation channels. At least one connector is provided to the combination of components to compress the layers of separation channels. In a variation, an optional outer shell may encase the unit to provide support and compress the stack with a unique threaded configuration.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David Mathew Johnson, Ashutosh Kole, Kai Melde
  • Publication number: 20140200553
    Abstract: Retention devices and methods are provided for drug delivery. The device may include a housing configured for intraluminal deployment into a human or animal subject and at least one reservoir contained within the housing. The at least one reservoir may have an actuation end and a release end and contain at least one drug formulation. A plug may be contained within the at least one reservoir and be moveable from the actuation end toward the release end. The device may also include an actuation system operably connected to the actuation end of the at least one reservoir and configured to drive the at least one drug formulation from the reservoir. The device may also include at least one retention member affixed to the housing and movable between a non-stressed position, a deployment position, and a retention position for retaining the device in an intraluminal location in the subject.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David Mathew Johnson, Martin Sheridan, Scott A. Uhland, Ramkumar Abhishek, Eric Peeters, Timothy J. Curley, Felicia Linn, Philipp H. Schmaelzle
  • Patent number: 8695687
    Abstract: A hybrid pin-fin micro heat pipe heat sink consists of a plurality of heat pipes secured to a base. The heat pipes have a generally hollow cross-section which transitions from a first cross-sectional shape (e.g., circular) to a second cross-sectional shape (e.g., triangular). A heat transfer medium (e.g., saturated steam) is sealed within the heat pipes. Cooling plates may be disposed over the base with the heat pipes in physical contact with and passing through the cooling plates. The method of manufacturing the heat pipes consists of passing a heat transfer medium through a pipe section having a first cross-sectional shape while transitioning to a second cross-sectional shape (e.g., by way of a rolling die press), then crimping the ends closed to seal the heat transfer medium therein.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 15, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: John S. Paschkewitz, Eric Shrader, David Mathew Johnson, John Stuart Fitch
  • Publication number: 20120145356
    Abstract: A hybrid pin-fin micro heat pipe heat sink comprises a plurality of heat pipes secured to a base. The heat pipes have a generally hollow cross-section which transitions from a first cross-sectional shape (e.g., circular) to a second cross-sectional shape (e.g., triangular). A heat transfer medium (e.g., saturated steam) is sealed within the heat pipes. Cooling plates may be disposed over the base with the heat pipes in physical contact with and passing through the cooling plates. The method of manufacturing the heat pipes comprises passing a heat transfer medium through a pipe section having a first cross-sectional shape while transitioning to a second cross-sectional shape (e.g., by way of a rolling die press), then crimping the ends closed to seal the heat transfer medium therein.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: John S. Paschkewitz, Eric Shrader, David Mathew Johnson, John Stuart Fitch