Patents by Inventor David Mohr

David Mohr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7731839
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: June 8, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
  • Publication number: 20090030214
    Abstract: Peroxo-carbonates derived from molten alkali and/or Group II metal salts, particularly carbonate salts are used as catalysts in oxidation and epoxidation reactions, transition metal compounds may be included to improve the selectivity of the reactions.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Helge Jaensch, Gary David Mohr
  • Publication number: 20090012338
    Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
    Type: Application
    Filed: September 10, 2008
    Publication date: January 8, 2009
    Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose' Guadalupe Santiesteban, Lei Zhang
  • Patent number: 7453018
    Abstract: This invention relates to a process for the selective alkylation of toluene and/or benzene with an oxygen-containing alkylation agent. In particular, the process uses a selectivated molecular sieve which has been modified by the addition of a hydrogenation component, wherein at least one of the following conditions is met: (a) the selectivated molecular sieve has an alpha value of less than 100 prior to the addition of the hydrogenation component, or (b) the selectivated and hydrogenated catalyst has an alpha value of less than 100. The process of this invention provides high selectivity for the alkylated product while reducing catalyst degradation.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, John Scott Buchanan, Robert Andrew Crane, Christine Nicole Elia, Xiaobing Feng, Larry Lee Iaccino, Gary David Mohr, Brenda Anne Raich, Jose′ Guadalupe Santiesteban, Lei Zhang
  • Patent number: 7335295
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: February 26, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Patent number: 7053258
    Abstract: A process is disclosed for selectively producing one or more aromatic compounds selected from benzene, toluene, para-xylene, meta-xylene, ortho-xylene, ethylbenzene and mixtures thereof from a feed containing C6–C20 hydrocarbons and/or C6–C8 alcohols. The feed is initially subjected to a chemical conversion step to increase the concentration of C6–C8 paraffin and/or olefin precursors of said one or more aromatic compounds and then resulting precursor-enriched feed is then contacted with a dehydrocyclization catalyst under conditions of temperature and hydrogen partial pressure sufficient to effect dehydrocyclization of said paraffin and/or olefin precursors. A product rich in the desired aromatic compound(s) can then be recovered from the dehydrocyclization effluent.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaobing Feng, Thomas Herman Colle, Gary David Mohr
  • Patent number: 7026264
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 ?. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6924405
    Abstract: A xylene isomerization process is disclosed in which any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in a separate reactor upstream of the xylene isomerization reactor and the xylene isomerization catalyst is contained in the same reactor, typically a clay treater, as that used to accommodate the olefin removal catalyst. In certain cases, a single catalyst may be used to effect both xylene isomerization and olefin removal.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 2, 2005
    Assignee: Exxon Mobil Chemical Patents, Inc.
    Inventor: Gary David Mohr
  • Patent number: 6864203
    Abstract: A process is provided for the alkylation, transalkylation, or isomerization of aromatic hydrocarbons. The processes comprises contacting aromatic hydrocarbons under conversion conditions with a zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises first crystals of a first large pore zeolite which are bound together by second crystals of a second zeolite.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 8, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Dan Eldon Hendriksen, Gary David Mohr, Johannes Petrus Verduijn, Robert Scott Smith
  • Patent number: 6858129
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs
  • Patent number: 6831203
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amounts of non-zeolitic binder and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The catalyst comprises first zeolite, crystals, a binder comprising second zeolite crystals and a hydrogenation/dehydrogenation metal. The zeolite bound zeolite catalyst is prepared by converting the silica binder of a silica bound aggregate containing the first crystals of said first zeolite and at least a portion of the hydrogenation/dehydrogenation metal to said second zeolite. Conversion processes such as naphtha reforming xylene isomerization/ethylbenzene conversion, the zeolite bound zeolite catalyst has excellent performance when used in hydrocarbon conversion processes such as naphtha reforming and xylenes isomerization/ethylbenzene conversion.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: December 14, 2004
    Assignee: Exxon Chemical Patent Inc.
    Inventors: Gary David Mohr, Johannes Petrus Verduijn
  • Publication number: 20040236166
    Abstract: A xylene isomerization process is disclosed in which any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in a separate reactor upstream of the xylene isomerization reactor and the xylene isomerization catalyst is contained in the same reactor, typically a clay treater, as that used to accommodate the olefin removal catalyst. In certain cases, a single catalyst may be used to effect both xylene isomerization and olefin removal.
    Type: Application
    Filed: June 17, 2004
    Publication date: November 25, 2004
    Inventor: Gary David Mohr
  • Patent number: 6811684
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6812181
    Abstract: There is provided a coated zeolite catalyst in which the accessibility of the acid sites on the external surfaces of the zeolite is controlled and a process for converting hydrocarbons utilizing the coated zeolite catalyst. The zeolite catalyst comprises core crystals of a first zeolite and a discontinuous layer of smaller size second crystals of a second zeolite which cover at least a portion of the external surface of the first crystals The coated zeolite catalyst finds particular application in hydrocarbon conversion processes where catalyst activity in combination with zeolite structure are important for reaction selectivity, e.g., catalytic cracking, alkylation, disproportional of toluene, isomerization, and transalkylation reactions.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van der Berge, Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Michael C. Bradford
  • Publication number: 20040198586
    Abstract: There is provided a process for converting hydrocarbons using a catalyst comprising macrostructures having a three-dimensional network of particles comprised of porous inorganic material. The particles of the macrostructures occupy less than 75% of the total volume of the macrostructures and are joined together to form a three-dimensional interconnected network comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 7, 2004
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6797849
    Abstract: A process for isomerizing xylenes in a feed containing xylenes is disclosed which process comprises: contacting the feed with a first isomerization catalyst in a first reactor under a first set of conditions effective to isomerize xylenes in the feed; and contacting the xylenes with a second isomerization catalyst in a second reactor under a second set of conditions effective to isomerize xylenes in the feed. The second reactor is typically a clay treater and contains a further catalyst effective under the second set of conditions to remove olefins in the feed. Any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in the first reactor or in a third reactor upstream of the first and second reactors.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy E. McMinn, Gary David Mohr
  • Patent number: 6787023
    Abstract: There is provided a catalyst containing porous macrostructures comprised of: (a) a three-dimensional network of particles of porous inorganic material (e.g., zeolites); and, (b) at least one metal (e.g., a catalytically active metal). The particles of the at least one macrostructure occupy less than 75% of the total volume of the at least one macrostructure and are jointed together to form a three-dimensional interconnected network. The three-dimensional interconnected network will usually be comprised of pores having diameters greater than about 20 Å. The macrostructures can be made by forming an admixture containing a porous organic ion exchanger (e.g., a polymer-based ion exchange resin) and a synthesis mixture (e.g., for zeolite formation) capable of forming the porous inorganic material and the at least one metal; converting the synthesis mixture to the porous inorganic material; and removing the porous organic ion exchanger from the inorganic material.
    Type: Grant
    Filed: May 20, 2000
    Date of Patent: September 7, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Wilfried Jozef Mortier, Xiaobing Feng, Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6770792
    Abstract: A xylene isomerization process is disclosed in which any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in a separate reactor upstream of the xylene isomerization reactor and the xylene isomerization catalyst is contained in the same reactor, typically a clay treater, as that used to accommodate the olefin removal catalyst. In certain cases, a single catalyst may be used to effect both xylene isomerization and olefin removal.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: August 3, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Gary David Mohr
  • Publication number: 20040087823
    Abstract: A process for isomerizing xylenes in a feed containing xylenes is disclosed which process comprises: contacting the feed with a first isomerization catalyst in a first reactor under a first set of conditions effective to isomerize xylenes in the feed; and contacting the xylenes with a second isomerization catalyst in a second reactor under a second set of conditions effective to isomerize xylenes in the feed. The second reactor is typically a clay treater and contains a further catalyst effective under the second set of conditions to remove olefins in the feed. Any ethylbenzene in the feed is removed, either by dealkylation or isomerization, in the first reactor or in a third reactor upstream of the first and second reactors.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: Timothy E. McMinn, Gary David Mohr
  • Patent number: 6699811
    Abstract: There is provided a zeolite bound zeolite catalyst which does not contain significant amount of non-zeolitic binder and can be tailored to optimize its performance and a process for converting hydrocarbons utilizing the zeolite bound zeolite catalyst. The zeolite bound zeolite catalyst comprises core crystals containing first crystals of a first zeolite and optionally second crystals of a second zeolite having a composition, structure type, or both that is different from said first zeolite and binder crystals containing third crystals of a third zeolite and optionally fourth crystals of a fourth zeolite having a composition, structure type, or both that is different from said third zeolite. If the core crystals do not contain the second crystals of the second zeolite, then the binder crystals must contain the fourth crystals of the fourth zeolite. The zeolite bound zeolite finds application in hydrocarbon conversion processes, e.g.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: March 2, 2004
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Gary David Mohr, Kenneth Ray Clem, Wilfried Jozef Mortier, Machteld Maria Mertens, Xiaobing Feng, Marc H. Anthonis, Bart Schoofs