Patents by Inventor David P. Martin

David P. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11639024
    Abstract: Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: May 2, 2023
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Reshad Bin Harun, Matthew Dubois, David P. Martin, Said Rizk
  • Publication number: 20220387171
    Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with rnicroporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
    Type: Application
    Filed: February 24, 2022
    Publication date: December 8, 2022
    Applicant: Tepha, Inc.
    Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
  • Publication number: 20220362001
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 17, 2022
    Applicant: Tepha, Inc.
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Publication number: 20220324162
    Abstract: Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Tepha, Inc.
    Inventors: Skander Limem, Reshad Bin Harun, Matthew Dubois, David P. Martin, Said Rizk
  • Patent number: 11439490
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: September 13, 2022
    Assignee: Tepha, Inc.
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Patent number: 11407168
    Abstract: Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: August 9, 2022
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Reshad Bin Harun, Matthew Dubois, David P. Martin, Said Rizk
  • Publication number: 20220202988
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: October 8, 2021
    Publication date: June 30, 2022
    Applicant: Tepha, Inc.
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Publication number: 20220176346
    Abstract: In one embodiment, a method of removing a substance from a solution by adsorption includes: interfacing a delivery component containing a quantity of amine functionalized chitin (AFC) compound as an adsorbent AFC compound with the solution containing the substance as an adsorbate substance; mixing the adsorbent AFC compound and the adsorbate substance in the solution for a period of time; and removing a mixture of the adsorbent AFC compound and at least a portion of the adsorbate substance from the solution.
    Type: Application
    Filed: September 29, 2021
    Publication date: June 9, 2022
    Inventors: Luke A. Gurtowski, David P. Martin, Christopher S. Griggs, Manoj K. Shukla, Christian T. Hubley
  • Patent number: 11291539
    Abstract: Implants with fillable reservoirs have been developed that are suitable for rhinoplasty, breast reconstruction, ear reconstruction, and replacement, reconstruction or repair of other soft tissues. The implants can be filled with graft material prior to implantation. The implants are preferably made from resorbable polymers, can be tailored to provide different geometries, mechanical properties and resorption rates in order to provide more consistent surgical outcomes. The implants preferably have an interconnected network of unit cells with microporous outer layers and optionally some or all of the unit cells having at least one macropore in their outer layers. The implants can be loaded by injection with microfat, collagen, DCF, cells, bioactive agents, and other augmentation materials, prior to implantation.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: April 5, 2022
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Fabio Felix, Said Rizk, David P. Martin, Simon F. Williams
  • Patent number: 11292885
    Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: April 5, 2022
    Assignee: Tepha, Inc.
    Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
  • Publication number: 20220096705
    Abstract: Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Applicant: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk
  • Publication number: 20220096716
    Abstract: Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 31, 2022
    Applicant: Tepha, Inc.
    Inventors: Said Rizk, David P. Martin, Fabio Felix, Matthew Bernasconi, Bhavin Shah, Simon F. Williams
  • Publication number: 20220033530
    Abstract: The invention is a renewable adsorbent material, amine-functionalized chitin (AFC) that can remove the following munitions compounds from solution while providing a concentration-dependent color change: NTO, DNAN, and TNT. Adsorption of the munitions constituents can be adjusted by pH; neutral pH provides maximum adsorption. NTO can desorb from the AFC at pH levels of 2 and 12; DNAN and TNT remain attached to AFC once adsorbed.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Luke A. Gurtowski, Manoj K. Shukla, David P. Martin, Christopher S. Griggs
  • Patent number: 11160898
    Abstract: Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 2, 2021
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk
  • Patent number: 11154642
    Abstract: Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 26, 2021
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, David P. Martin, Fabio Felix, Matthew Bernasconi, Bhavin Shah, Simon F. Williams
  • Publication number: 20210244860
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 12, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Patent number: 11000826
    Abstract: The invention is a renewable adsorbent material, amine-functionalized chitin (AFC) that can remove the following munitions compounds from solution while providing a concentration-dependent color change: NTO, DNAN, and TNT. Adsorption of the munitions constituents can be adjusted by pH; neutral pH provides maximum adsorption. NTO can desorb from the AFC at pH levels of 2 and 12; DNAN and TNT remain attached to AFC once adsorbed.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: May 11, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Luke A Gurtowski, Manoj K Shukla, David P Martin, Christopher S Griggs
  • Patent number: 10994057
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 4, 2021
    Assignee: TEPHA, INC.
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20210046212
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: February 18, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20210047484
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: February 18, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez