Patents by Inventor David P. Martin

David P. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200390944
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20200276006
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Application
    Filed: February 21, 2020
    Publication date: September 3, 2020
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Publication number: 20200240044
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 30, 2020
    Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
  • Patent number: 10722345
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 28, 2020
    Assignee: TEPHA, INC.
    Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
  • Patent number: 10689498
    Abstract: Methods to produce substantially closed cell foams with densities less than 0.75 g/cm3, and more preferably less than 0.5 g/cm3, without substantial loss of the polymer's weight average molecular weight, have been developed. The closed cells foams have an open cell content of generally less than 50%, and more preferably an open cell content of less than 20%, and the cells have a maximum diameter of less than 5 mm. The foam may include poly-4-hydroxybutyrate or a copolymer thereof. Preferably, the foam is derived by heating a foam polymer formula to a temperature above the melt temperature of the polymer to form a melt polymer system, adding a blowing agent to produce a foamable melt, extruding the foamable melt through a die to a lower pressure to cause foaming, cooling of the foam, and solidification of the foam. These foam structures can be used for fabrication of medical products.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 23, 2020
    Assignee: Tepha, Inc.
    Inventors: Dennis Connelly, Fabio Felix, David P. Martin, Jon Montcrieff, Said Rizk, Simon F. Williams
  • Publication number: 20200139018
    Abstract: Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: David P. Martin, Said Rizk, Simon F. Williams, Arikha Moses
  • Patent number: 10626521
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications, including mesh sutures.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 21, 2020
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, Bhavin Shah, Amit Ganatra, Skander Limem, David P. Martin, Simon F. Williams
  • Patent number: 10590566
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: March 17, 2020
    Assignee: Tepha, Inc.
    Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
  • Patent number: 10568728
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: February 25, 2020
    Assignee: Tepha, Inc.
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Patent number: 10525172
    Abstract: Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: January 7, 2020
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Simon F. Williams, Arikha Moses
  • Publication number: 20190375149
    Abstract: Methods to fabricate objects by 3D printing of poly-4-hydroxybutyrate (P4HB) and copolymers thereof have been developed. In one method, these objects are produced by continuous fused filament fabrication using an apparatus and conditions that overcome the problems of poor feeding of the filament resulting from the low softening temperature of the filament and heat creep along the fed filament. Methods using an apparatus including a heat sink, a melt tube, a heating block and nozzle, and a transition zone between the heat sink and heating block, with the melt tube extending through the heat sink, transition zone, and heat block to the nozzle are disclosed. 3D objects are also printed by fused pellet deposition (FPD), melt extrusion deposition (MED), selective laser melting (SLM), printing of slurries and solutions using a coagulation bath, and printing using a binding solution and polymer granules.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 12, 2019
    Inventors: Skander Limem, Reshad Bin Harun, Matthew Dubois, David P. Martin, Said Rizk
  • Patent number: 10463619
    Abstract: Compositions and methods of making and using of microparticle compositions that provide faster flow or improved injectability through smaller or small-diameter needles have been developed. Notably, the microparticle compositions can be successfully delivered or administered through smaller-diameter needles than other microparticle compositions prepared from biocompatible or biodegradable polymers including, for example, poly(lactide), poly(lactide-co-glycolide), polycaprolactone, or poly-3-hydroxybutyrate. The microparticle compositions can exhibit a higher solids loading for a given needle size and/or faster flow through needles than other microparticle compositions. Further, blending or mixing the polymer of the microparticle composition with other polymer formulations can enhance the injectability of the resulting formulation.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: November 5, 2019
    Assignees: TEPHA, INC., EVONIK CORPORATION
    Inventors: Peter Markland, Gary Anthony Winchester, Thomas Robert Tice, David P. Martin
  • Publication number: 20190314130
    Abstract: Resorbable three-dimensional implants that can be temporarily deformed, implanted by minimally invasive means, and resume their original shape in vivo, have been developed. These implants are particularly suitable for use in minimally invasive procedures for tissue reinforcement, repair of hernias, and applications where it is desirable for the implant to contour in vivo to an anatomical shape, such as the inguinofemoral region. In the preferred embodiment, the implants are made from meshes of poly-4-hydroxybutyrate monofilament that have reinforced outlying borders that allow the meshes to form three-dimensional shapes that can be temporarily deformed. These implants can resume three-dimensional shapes after being temporarily deformed that contour to the host's tissue or an anatomical shape, for example, in the repair of a hernia, and particularly a hernia in the inguinofemoral region.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 17, 2019
    Inventors: Said Rizk, Amit Ganatra, Antonio Fosco, David P. Martin, Simon F. Williams
  • Publication number: 20190269817
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Publication number: 20190269816
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Publication number: 20190269815
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Publication number: 20190269822
    Abstract: Resorbable implants comprising poly(butylene succinate) and copolymers thereof have been developed. The implants implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing, and the fibers may be oriented. Coverings and receptacles made from forms of poly(butylene succinate) and copolymers thereof have also been developed for use with cardiac rhythm management devices and other implantable devices. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Simon F. Williams, Said Rizk, David P. Martin
  • Patent number: 10335257
    Abstract: Resorbable three-dimensional implants that can be temporarily deformed, implanted by minimally invasive means, and resume their original shape in vivo, have been developed. These implants are particularly suitable for use in minimally invasive procedures for tissue reinforcement, repair of hernias, and applications where it is desirable for the implant to contour in vivo to an anatomical shape, such as the inguinofemoral region. In the preferred embodiment, the implants are made from meshes of poly-4-hydroxybutyrate monofilament that have reinforced outlying borders that allow the meshes to form three-dimensional shapes that can be temporarily deformed. These implants can resume three-dimensional shapes after being temporarily deformed that contour to the host's tissue or an anatomical shape, for example, in the repair of a hernia, and particularly a hernia in the inguinofemoral region.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: July 2, 2019
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, Amit Ganatra, Antonio Fosco, David P. Martin, Simon F. Williams
  • Patent number: 10314683
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: June 11, 2019
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Publication number: 20190167834
    Abstract: Methods to produce thermoformed implants comprising poly-4-hydroxybutyrate homopolymer, copolymer, or blend thereof, including surgical meshes, have been developed. These thermoforms are preferably produced from porous substrates of poly-4-hydroxybutyrate homopolymer or copolymer thereof, such as surgical meshes, by vacuum membrane thermoforming. The porous thermoformed implant is formed by placing a porous substrate of poly-4-hydroxybutyrate homopolymer or copolymer thereof over a mold, covering the substrate and mold with a membrane, applying a vacuum to the membrane so that the membrane and substrate are drawn down on the mold and tension is applied to the substrate, and heating the substrate while it is under tension to form the thermoform.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 6, 2019
    Inventors: David P. Martin, Said Rizk