Patents by Inventor David P. Martin

David P. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7179883
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: February 20, 2007
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 7081357
    Abstract: The gene encoding a 4-hydroxybutyryl-CoA transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, ?-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: July 25, 2006
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Patent number: 7025980
    Abstract: Polyhydroxyalkanoate materials are provided which are suitable for repair of soft tissue, augmentation, and as viscosupplements in animals, particularly humans. The materials comprise liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions. Devices also are provided for storage and delivery of the polyhydroxyalkanoate compositions in vivo. Methods are provided for repairing or augmenting soft tissue in animals using the materials. In a preferred embodiment, the method include the steps of (a) selecting the animal soft tissue to be repaired or augmented; and (b) placing an injectable, liquid polyhydroxyalkanoate polymer or a polyhydroxyalkanoate microdispersion into the animal soft tissue, preferably using a minimally-invasive method such as injection. In another embodiment, the liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions are used as viscosupplements.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: April 11, 2006
    Assignee: Tepha, Inc.
    Inventors: Simon F. Williams, David P. Martin
  • Patent number: 6878758
    Abstract: Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: April 12, 2005
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Frank Skraly, Simon F. Williams
  • Patent number: 6867248
    Abstract: Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: March 15, 2005
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Frank Skraly, Simon F. Williams
  • Patent number: 6867247
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: March 15, 2005
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 6838493
    Abstract: Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: January 4, 2005
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Frank A. Skraly
  • Patent number: 6828357
    Abstract: Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: December 7, 2004
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Frank Skraly, Simon F. Williams
  • Publication number: 20040234576
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 25, 2004
    Applicant: Tepha, Inc., State of Incorporation Delaware
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Publication number: 20040137586
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Application
    Filed: February 6, 2004
    Publication date: July 15, 2004
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Patent number: 6709848
    Abstract: Methods are provided for separating polyhydroxyalkanoates (“PHAs”) from plants, such as transgenic oil crop plants. The methods advantageously permit both the oil and the PHAs to be recovered from the plant biomass. To isolate the PHAs, in one embodiment, a biomass derived from an oil crop plant is pre-processed, for example by grinding, crushing or rolling. The oil then is extracted from the biomass with a first solvent in which the oil is soluble and in which the PHAs are not highly soluble to remove the oil. The biomass then can be extracted with a second solvent in which the PHA is soluble, to separate the PHA from the biomass. Alternatively, the PHA-containing biomass is treated with a chemical or biochemical agent, such as an enzyme, to chemically transform the PHA into a PHA derivative. The PHA derivative then is separated from the mixture using, for example, a physical separation process such as distillation, extraction or chromatography.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: March 23, 2004
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Oliver P. Peoples, Simon F. Williams
  • Publication number: 20040053381
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided for use in numerous biomedical applications. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. PHAs are provided which are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone and other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Application
    Filed: August 15, 2003
    Publication date: March 18, 2004
    Applicant: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 6689589
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20030236320
    Abstract: Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 25, 2003
    Applicant: Metabolix, Inc.
    Inventors: David P. Martin, Frank Skraly, Simon F. Williams
  • Publication number: 20030211131
    Abstract: Genetically engineered organisms for production of PHA copolymers containing 2-hydroxyacid monomers and the methods of making and using thereof have been developed. The copolymers containing 2-hydroxyacid monomers can be synthesized via biosynthesis by the action of a PHA polymerase in a living cell. By changing the genetic background of the cells, one can control specific metabolic pathways allowing control of the level of glycolic acid co-monomer in the PHA polymer.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 13, 2003
    Applicants: Metabolix, Inc., Tepha, Inc.
    Inventors: David P. Martin, Frank A. Skraly
  • Patent number: 6623749
    Abstract: Polyhydroxyalkanoate (PHA) that contains a pyrogen such as an endotoxin due to a process of producing the PHA is treated to remove the pyrogen by a process that does not affect the inherent chemical and physical properties of the PHA to obtain a biocompatible PHA. PHA produced by fermentation with a Gram negative bacteria can be treated with an oxidizing agent such as hydrogen peroxide or benzoyl peroxide to reduce the endotoxin content to less than 20 endotoxin units/gram of PHA to produce PHA that does not elicit an acute inflammatory response when implanted in an animal. The PHA may have a melting point or glass transition temperature less than 136° C., and can be chemically modified or derivatized such as by covalently coupling an attachment or targeting molecule.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: September 23, 2003
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 6623730
    Abstract: Oligomers and polymer compositions are provided which comprise GHB and produce GHB after administration in vivo. Devices for the storage and delivery of these polymers and oligomers are also provided. These oligomers and polymer compositions are useful in a variety of applications. The compositions can be used therapeutically, for example, in the treatment of patients with narcolepsy, chronic schizophrenia, catatonic schizophrenia, atypical psychoses, chronic brain syndrome, neurosis, alcoholism, drug addiction and withdrawal, Parkinson's disease and other neuropharmacological illnesses, hypertension, ischemia, circulatory collapse, radiation exposure, cancer, and myocardial infarction. Other uses for the compositions include anesthesia induction, sedation, growth hormone production, heightened sexual desire, anorectic effects, euphoria, smooth muscle relaxation, muscle mass production, and sleep, including rapid eye movement sleep.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: September 23, 2003
    Assignees: Tepha, Inc., Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin
  • Patent number: 6610764
    Abstract: Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: August 26, 2003
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Frank Skraly, Simon F. Williams
  • Patent number: 6585994
    Abstract: Polyhydroxyalkanoate materials are provided which are suitable for repair of soft tissue, augmentation, and as viscosupplements in animals, particularly humans. The materials comprise liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions. Devices also are provided for storage and delivery of the polyhydroxyalkanoate compositions in vivo. Methods are provided for repairing or augmenting soft tissue in animals using the materials. In a preferred embodiment, the method include the steps of (a) selecting the animal soft tissue to be repaired or augmented; and (b) placing an injectable, liquid polyhydroxyalkanoate polymer or a polyhydroxyalkanoate microdispersion into the animal soft tissue, preferably using a minimally-invasive method such as injection. In another embodiment, the liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions are used as viscosupplements.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: July 1, 2003
    Assignee: Tepha, Inc.
    Inventors: Simon F. Williams, David P. Martin
  • Patent number: 6555123
    Abstract: Polyhydroxyalkanoate materials are provided which are suitable for repair of soft tissue, augmentation, and as viscosupplements in animals, particularly humans. The materials comprise liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions. Devices also are provided for storage and delivery of the polyhydroxyalkanoate compositions in vivo. Methods are provided for repairing or augmenting soft tissue in animals using the materials. In a preferred embodiment, the method include the steps of (a) selecting the animal soft tissue to be repaired or augmented; and (b) placing an injectable, liquid polyhydroxyalkanoate polymer or a polyhydroxyalkanoate microdispersion into the animal soft tissue, preferably using a minimally-invasive method such as injection. In another embodiment, the liquid polyhydroxyalkanoate polymer compositions or polyhydroxyalkanoate microdispersions are used as viscosupplements.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: April 29, 2003
    Assignee: Tepha, Inc.
    Inventors: Simon F. Williams, David P. Martin