Patents by Inventor David P. Martin

David P. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8961591
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delarmnating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 24, 2015
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
  • Publication number: 20150018878
    Abstract: Compositions and materials for making soft suture anchors comprising materials that improve osteointegration have been developed. These compositions and materials comprise bioceramics, resorbable materials, and combinations thereof. A preferred embodiment comprises a soft suture anchor comprising a resorbable ceramic and a resorbable suture.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Applicant: Tepha, Inc.
    Inventors: Said Rizk, David P. Martin, Matthew Bernasconi, Simon F. Williams
  • Publication number: 20150012018
    Abstract: Continuous processing methods are used for making absorbable polymeric non-wovens, with anisotropic properties, improved mechanical properties and without substantial loss of polymer molecular weight during processing. The method includes producing dry spun-non wovens from a polymer, and collecting the fibers using a rotating collector plate, preferably a rotating cylinder, to collect the non-woven instead of a fiberglass stationary collector plate. The non-wovens can be used for a variety of purposes including fabrication of medical devices.
    Type: Application
    Filed: May 16, 2014
    Publication date: January 8, 2015
    Inventors: Kai Guo, Fabio Felix, David P. Martin
  • Publication number: 20140363672
    Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.
    Type: Application
    Filed: May 15, 2014
    Publication date: December 11, 2014
    Applicant: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
  • Publication number: 20140277572
    Abstract: Methods to produce structures containing ultrafine fibers with average diameters from 10 nm to 10 ?m and more preferably from 50 nm to 5 ?m, have been developed. These methods produce ultrafine fibers without substantial loss of the polymer's weight average molecular weight. The ultrafine electrospun fibers have an unexpectedly higher degree of molecular orientation, and higher melt temperature than fibers derived by dry spinning. In the preferred embodiment, the polymer comprises 4-hydroxybutyrate. The ultrafine fibers are preferably derived by electrospinning. A solution of the polymer is dissolved in a solvent, pumped through a spinneret, subjected to an electric field, and ultrafine fibers with a high degree of molecular orientation are collected. These structures of ultrafine fibers can be used for a variety of purposes including fabrication of medical devices.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: David P. Martin, Kai Guo, Said Rizk, Simon F. Williams
  • Publication number: 20140275325
    Abstract: Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Tepha, Inc.
    Inventors: David P. Martin, Kai Guo, Simon F. Williams
  • Publication number: 20140248417
    Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
  • Publication number: 20140248331
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Publication number: 20140246802
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or nomopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally he combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Patent number: 8771720
    Abstract: Polyhydroxyalkanoates (PHAs) from which pyrogen has been removed are provided. PHAs which have been chemically modified to enhance physical and/or chemical properties, for targeting or to modify biodegradability or clearance by the reticuloendothelial system (RES), are described. Methods for depyrogenating PHA polymers prepared by bacterial fermentation processes are also provided, wherein pyrogens are removed from the polymers without adversely impacting the polymers' inherent chemical structures and physical properties. PHAs with advantageous processing characteristics, including low melting points and/or solubility in non-toxic solvents, are also described. The PHAs are suitable for use in in vivo applications such as in tissue coatings, stents, sutures, tubing, bone, other prostheses, bone or tissue cements, tissue regeneration devices, wound dressings, drug delivery, and for diagnostic and prophylactic uses.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Metabolix, Inc.
    Inventors: Simon F. Williams, David P. Martin, Tillman Gerngross, Daniel M. Horowitz
  • Patent number: 8758657
    Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 24, 2014
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
  • Patent number: 8753555
    Abstract: Continuous processing methods for making absorbable polymeric films with one or more of the following properties: high toughness, low modulus, high tensile strength, and thickness less than 10 mm, more preferably less than 1 mm, and more preferably less than 100 ?m, have been developed. In the preferred embodiment, the polymer is a polyhydroxyalkanoate, and in the most preferred embodiment, the polymer comprises 4-hydroxybutyrate. A particularly preferred embodiment is a film of poly-4-hydroxybutyrate or copolymer thereof, wherein the film has a tensile strength greater than 5.5 kgf/mm2, tensile modulus less than 181 kgf/mm2, and elongation at break from 10-500%, wherein the film is derived by a continuous process such as melt extrusion or solvent casting, followed by orientation to more than 25% of the film's original length in one or more directions. These can be used for a variety of purposes including fabrication of medical devices.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: June 17, 2014
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, David P. Martin, Kicherl Ho, Simon F. Williams
  • Patent number: 8747468
    Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
  • Patent number: 8703449
    Abstract: Genetically engineered organisms for production of PHA copolymers containing 2-hydroxyacid monomers and the methods of making and using thereof have been developed. The copolymers containing 2-hydroxyacid monomers can be synthesized via biosynthesis by the action of a PHA polymerase in a living cell. By changing the genetic background of the cells, one can control specific metabolic pathways allowing control of the level of glycolic acid co-monomer in the PHA polymer.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: April 22, 2014
    Assignee: Metabolix, Inc.
    Inventors: David P. Martin, Frank A. Skraly
  • Patent number: 8680228
    Abstract: Methods for making P4HB polymers and copolymers thereof that are useful for preparing controlled release systems, medical devices and as intermediates in chemical synthesis, have been developed. These methods avoid the use of organic solvents, and basic conditions that can cause transesterification reactions with polymer terminal end groups or elimination reactions. A preferred embodiment is a method for producing polymers of P4HB with weight average molecular weight less than 250,000, and more preferably, less than 100,000, and a Pd of less than 3, which are useful in controlled release. A particularly preferred embodiment utilizes aqueous acetic acid to hydrolyze pellets of P4HB polymers and copolymers while in suspension.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 25, 2014
    Assignee: Tepha, Inc.
    Inventors: Kai Guo, David P. Martin
  • Publication number: 20140075508
    Abstract: A gatekeeper device delegates an ability to access a resource to an access device by transmitting metadata, which includes access information for accessing the resource. The access device uses the metadata to retrieve the associated resource from a resource server. By transmitting the metadata in lieu of the resource, flexible use of the resources is implemented while enabling compliance with various restriction schemes. The system may condition the delegation or transfer of resource access on one or more factors, such as proximity between the gatekeeper device and the access devices. Using information about an access device, the resource server may optimize the resources for the receiving access device.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 13, 2014
    Applicant: 4DK Technologies, Inc.
    Inventors: Tamara L. Casey, Paul-Andre Raymond, Ilya Ziskind, David P. Martin
  • Publication number: 20140046351
    Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Tepha, Inc.
    Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
  • Patent number: 8626951
    Abstract: An interoperability system abstracts the protocols used by multiple network applications into an interoperability framework, thereby allowing the network applications to interoperate with each other and/or with modules for providing enhanced functionalities. The interoperability framework includes a number of adapters that modularize the components needed for interoperation and abstracts content from the underlying protocols and procedures used by the network applications. The interoperability framework includes a resource control that enables the network applications to access shared resources, such as data and content used by the network applications, thus allowing the applications to interoperate and for functionality enhancements to be added.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 7, 2014
    Assignee: 4DK Technologies, Inc.
    Inventors: Tamara L. Casey, David P. Martin
  • Patent number: 8613044
    Abstract: A gatekeeper device delegates an ability to access a resource to an access device by transmitting metadata, which includes access information for accessing the resource. The access device uses the metadata to retrieve the associated resource from a resource server. By transmitting the metadata in lieu of the resource, flexible use of the resources is implemented while enabling compliance with various restriction schemes. The system may condition the delegation or transfer of resource access on one or more factors, such as proximity between the gatekeeper device and the access devices. Using information about an access device, the resource server may optimize the resources for the receiving access device.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: December 17, 2013
    Assignee: 4DK Technologies, Inc.
    Inventors: Tamara L. Casey, Paul-Andre Raymond, Ilya Ziskind, David P. Martin
  • Publication number: 20130309166
    Abstract: Compositions of P4HB and processes to injection mold these compositions have been developed. These compositions are prepared from P4HB polymers and blends having intrinsic viscosities less than 3.2 dl/g but greater than 0.8 dl/g, moisture contents of less than 0.5% by weight, and more preferably less than 0.05% by weight, and using a polymer melt temperature during molding of at least 150° C. A preferred embodiment comprises a P4HB molding with an intrinsic viscosity of less than 3.2 dl/g that degrades rapidly in vivo.
    Type: Application
    Filed: March 13, 2013
    Publication date: November 21, 2013
    Applicant: TEPHA, INC.
    Inventors: Said Rizk, Dennis W. Connelly, Matthew Bernasconi, Andrew J. Carter, David P. Martin, Simon F. Williams