Patents by Inventor David P. Vanderwiel

David P. Vanderwiel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160214093
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Application
    Filed: December 21, 2015
    Publication date: July 28, 2016
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20100292074
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Application
    Filed: April 12, 2010
    Publication date: November 18, 2010
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 7700518
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 20, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 7632320
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: December 15, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Patent number: 7585899
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 ?m, preferably from about 10 ?m to about 300 ?m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: September 8, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20090010823
    Abstract: The present invention provides new microreactor systems, catalysts, and chemical processes. Methods of making novel catalysts and reaction apparatus are also described.
    Type: Application
    Filed: January 15, 2008
    Publication date: January 8, 2009
    Applicant: Velocys Corp.
    Inventors: Terry J. Mazanec, Yong Wang, Laura J. Silva, David P. Vanderwiel
  • Patent number: 7404936
    Abstract: The present invention provides new microreactor systems, catalysts, and chemical processes. Methods of making novel catalysts and reaction apparatus are also described.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: July 29, 2008
    Assignee: Velocys
    Inventors: Terry J. Mazanec, Yong Wang, Laura J. Silva, David P. VanderWiel
  • Patent number: 7335346
    Abstract: The present invention provides a method of steam reforming a hydrocarbon over a catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: February 26, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Tonkovich, David P. Vanderwiel
  • Patent number: 7288231
    Abstract: The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: October 30, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. VanderWiel, Robert S. Wegeng
  • Patent number: 7045486
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 ?m, preferably from about 10 ?m to about 300 ?m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure is placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: May 16, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6984363
    Abstract: The present invention is a chemical reactor for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: January 10, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Patent number: 6982287
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: January 3, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6958310
    Abstract: A method of steam reforming a hydrocarbon over a spinel-containing catalyst at short residence times or short contact times. The present invention also provides spinel-containing catalysts. Surprisingly superior results and properties obtained in methods and catalysts of the present invention are also described.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: October 25, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Anna Lee Y. Tonkovich, David P. Vanderwiel
  • Patent number: 6824592
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: November 30, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr., Chad M. Cucksey
  • Patent number: 6814781
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 9, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr.
  • Patent number: 6750258
    Abstract: The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 15, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Publication number: 20040105812
    Abstract: The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 3, 2004
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. VanderWiel, Robert S. Wegeng
  • Patent number: 6734137
    Abstract: The present invention includes an improvement to the existing method of steam reforming of hydrocarbon, wherein the improvement comprises: the flowing is at a rate providing a residence time less than about 0.1 sec resulting in obtaining product formation yield or amount that is the same or greater compared to product formation at a longer residence time. Another improvement of the present invention is operation at a steam to carbon ratio that is substantially stoichiometric and maintaining activity of the supported catalyst. The present invention also includes a catalyst structure for steam reforming of a hydrocarbon.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: May 11, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich
  • Publication number: 20040063799
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 &mgr;m, preferably from about 10 &mgr;m to about 300 &mgr;m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure is placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Application
    Filed: September 19, 2003
    Publication date: April 1, 2004
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 6680044
    Abstract: The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: January 20, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. VanderWiel, Robert S. Wegeng