Patents by Inventor David Price

David Price has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210299394
    Abstract: A molded member containing a thermoplastic material and a substrate, wherein at least a portion of the substrate is coupled to the thermoplastic material via a silicon-containing linker, and a respiratory apparatus containing the molded member are disclosed. A respiratory apparatus containing a molded member, wherein the molded member contains a thermosetting material and a substrate, and wherein at least a portion of the substrate is coupled to the thermosetting material via a silicon-containing linker is also disclosed.
    Type: Application
    Filed: May 9, 2019
    Publication date: September 30, 2021
    Applicant: Fisher & Paykel Healthcare Limited
    Inventors: Benjamin James Trace MASTERTON, John David PRICE, Manatchanok SITTHIRACHA, Maurice Wen-Bin CHAI, Mathew Ian PEACOCK, Jeffrey CHEN, Kevin Blake POWELL, Jason Allan KLENNER, Timothy Dee GIERKE
  • Patent number: 11111649
    Abstract: A working machine having a base assembly including a ground engaging structure; an undercarriage connected to the ground engaging structure; a superstructure connected to the undercarriage; a working arm mounted to the superstructure; a connector connecting the undercarriage to the superstructure; and a drive arrangement located in the base assembly for moving the ground engaging structure to propel, in use, the working machine.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 7, 2021
    Assignee: J. C. Bamford Excavators Limited
    Inventors: Jonathan Lyle, Peter Jowett, John Griffin, David Price, Nicholas Roberts, Ryan Page, Ian Carswell
  • Publication number: 20210267506
    Abstract: Techniques for data analysis and user guidance are provided. One or more current measurements of one or more current analyte levels for the user are received from a sensor. A pattern is generated based on the one or more current measurements and the one or more past measurements. A first alignment with a first user target is then determined based on the pattern, where the first user target relates to one or more of a mental state or physical state of the user. A first result is output to the user, based on the determined first alignment.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: Mark Edward Selander, Alexander Michael Diener, Ryan Richard Ruehl, Kazanna Calais Hames, Mark Douglas Kempkey, Chad Michael Patterson, Apurv Ullas Kamath, Matthew Lawrence Johnson, Jason M. Halac, David A. Price, Peter C. Simpson, Devon M. Headen, Samuel Isaac Epstein
  • Publication number: 20210260286
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260288
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210259591
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260289
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260287
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Patent number: 11076880
    Abstract: An ultrasonic surgical apparatus including a first signal generator outputting a drive signal at a predetermined voltage and frequency, a first oscillating structure receiving the drive signal and oscillating at the frequency of the drive signal, and a bridge circuit, detecting the mechanical motion of the first oscillating structure and outputting a signal representative of the mechanical motion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 3, 2021
    Assignee: COVIDIEN LP
    Inventors: Anthony B. Ross, David J. Van Tol, David Price
  • Patent number: 11034678
    Abstract: Compounds of Formula I that inhibit the activity of the diacylglycerol acyltransferase 2 (DGAT2) and their uses in the treatment of diseases linked thereto in animals are described herein.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: June 15, 2021
    Assignee: Pfizer Inc.
    Inventors: Markus Boehm, Shawn Cabral, Matthew S. Dowling, Kentaro Futatsugi, Kim Huard, Esther Cheng Yin Lee, Allyn T. Londregan, Jana Polivkova, David A. Price, Qifang Li
  • Publication number: 20210074563
    Abstract: The invention relates to a system for manufacturing a plurality of integrated circuits, IC, mounted on a common support, the system comprising: an input station configured (adapted, arranged) to receive at least one common support; an output station configured (adapted, arranged) to receive at least one common support having a plurality of integrated circuits formed thereon; a plurality of processing modules each module being operable (configured, arranged, adapted) to perform at least one of the processing steps (e.g. deposition, patterning, etching) for forming an integrated circuit on the common support; a transfer means operable (configured, arranged, adapted) to transfer the at least one common support from the input station to the output station and to one or more of the processing modules therebetween; control means (e.g.
    Type: Application
    Filed: January 30, 2019
    Publication date: March 11, 2021
    Inventors: Richard David PRICE, Neil DAVIES, Scott WHITE, Thomas Stanley VAN DEN HEEVER, Kenneth David WILLIAMSON, Nathaniel James GREEN
  • Publication number: 20210045698
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventors: Eric Cohen, Brian Christopher Smith, Michael Robert Mensinger, Rian Draeger, Katherine Yerre Koehler, Leif N. Bowman, David Price, Shawn Larvenz, Eli Reihman
  • Patent number: 10867420
    Abstract: Systems and methods are described that provide a dynamic reporting functionality that can identify important information and dynamically present a report about the important information that highlights important findings to the user. The described systems and methods are generally described in the field of diabetes management, but are applicable to other medical reports as well. In one implementation, the dynamic reports are based on available data and devices. For example, useless sections of the report, such as those with no populated data, may be removed, minimized in importance, assigned a lower priority, or the like.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 15, 2020
    Assignee: DexCom, Inc.
    Inventors: Georgios Zamanakos, Daniel Justin Wiedeback, Jeffrey Grant Stewart, Eli Reihman, David Price, Lauren C. Miller, Keri Leone, Dan Kraemer, Katherine Eng Kirby, Greg Kida, Apurv Ullas Kamath, Adam R. Greene, Rebecca Gimenez, Sarah Paige Elli, Rian Draeger, Shane Philip Delmore, Leif N. Bowman
  • Patent number: 10860687
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: December 8, 2020
    Assignee: DexCom, Inc.
    Inventors: Eric Cohen, Brian Christopher Smith, Michael Robert Mensinger, Rian Draeger, Katherine Yerre Koehler, Leif N. Bowman, David Price, Shawn Larvenz, Eli Reihman
  • Publication number: 20200329966
    Abstract: A system is provided for monitoring analyte in a host, including a continuous analyte sensor that produces a data stream indicative of a host's analyte concentration and a device that receives and records data from the data stream from the continuous analyte sensor. In one embodiment, the device includes a single point analyte monitor, from which it obtains an analyte value, and is configured to display only single point analyte measurement values, and not any analyte measurement values associated with data received from the continuous analyte sensor. Instead, data received from the continuous analyte sensor is used to provide alarms to the user when the analyte concentration and/or the rate of change of analyte concentration, as measured by the continuous analyte sensor, is above or below a predetermined range. Data received from the continuous analyte sensor may also be used to prompt the diabetic or caregiver to take certain actions, such as to perform another single point blood glucose measurement.
    Type: Application
    Filed: July 7, 2020
    Publication date: October 22, 2020
    Inventors: Jorge Valdes, David Price, Leif N. Bowman, Kristin Koenekamp Cote
  • Patent number: 10811383
    Abstract: A method of manufacturing a plurality of electronic circuits is disclosed. Each electronic circuit comprises a respective first portion, comprising a respective group of contact pads, and a respective integrated circuit, IC, comprising a respective group of terminals and mounted on the respective group of contact pads with each terminal in electrical contact with a respective contact pad. The method comprises: providing a first structure comprising the plurality of first portions; providing a second structure comprising the plurality of ICs and a common support arranged to support the plurality of ICs; transferring said ICs from the common support onto a first roller; transferring said ICs from the first roller onto a second roller; and transferring said ICs from the second roller onto the first structure such that each group of terminals is mounted on a respective group of contact pads.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: October 20, 2020
    Assignee: PRAGMATIC PRINTING LTD.
    Inventors: Neil Davies, Richard David Price, Stephen Devenport, Stuart Philip Speakman
  • Patent number: 10801623
    Abstract: A device and method for extending the lifespan of a shaft seal for an open-drive compressor is provided. The device and method can also reduce and/or prevent deterioration of the shaft seal regardless of the operation condition of the open-drive compressor. The device and method can further reduce and/or prevent leakage of a lubricant and/or refrigerant that can cause deterioration of components within a transport refrigeration unit (TRU).
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: October 13, 2020
    Assignee: Thermo King Corporation
    Inventors: Joseph Robert Kaiser, David John Dykes, Ralph David Price, Ryan Michael Fritts
  • Patent number: D921057
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 1, 2021
    Assignee: J.C. BAMFORD EXCAVATORS LIMITED
    Inventors: David Price, Christopher Streat
  • Patent number: D931343
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 21, 2021
    Assignee: J.C. BAMFORD EXCAVATORS LIMITED
    Inventors: David Price, Christopher Streat
  • Patent number: D931344
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 21, 2021
    Assignee: J.C. BAMFORD EXCAVATORS LIMITED
    Inventors: David Price, Christopher Streat