Patents by Inventor David R. Kaes

David R. Kaes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190336191
    Abstract: A bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder on the coherent mass. In some embodiments, a method of implanting a bone material is provided, the method comprising contacting the bone material with a liquid, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass; molding the bone material into a shape to implant the bone material; and implanting the bone material at the target tissue site.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Patent number: 10368930
    Abstract: A bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder on the coherent mass. In some embodiments, a method of implanting a bone material is provided, the method comprising contacting the bone material with a liquid, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass; molding the bone material into a shape to implant the bone material; and implanting the bone material at the target tissue site.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: August 6, 2019
    Assignee: Warsaw Orthopedic,Inc.
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Patent number: 10322209
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: June 18, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd Boyce, Lawrence A. Shimp
  • Patent number: 10194964
    Abstract: A bone material comprising a coherent mass of cartridge milled and demineralized bone fibers is provided, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material comprising a lyophilized coherent mass of cartridge milled and demineralized bone fibers is provided, the lyophilized coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a method of making an implantable bone material is provided, the method comprising drying a coherent mass of cartridge milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: February 5, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem N. Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Publication number: 20180303616
    Abstract: Computer implemented methods of producing a bone graft are provided. These methods include obtaining a 3-D image of an intended bone graft site; generating a 3-D digital model of the bone graft based on the 3-D image of the intended bone graft site, the 3-D digital model of the bone graft being configured to fit within a 3-D digital model of the intended bone graft site; storing the 3-D digital model on a database coupled to a processor, the processor having instructions for retrieving the stored 3-D digital model of the bone graft and for combining a carrier material with, in or on a bone material based on the stored 3-D digital model and for instructing a 3-D printer to produce the bone graft. A layered 3-D printed bone graft prepared by the computer implemented method is also provided.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 25, 2018
    Inventors: Subhabrata Bhattacharyya, David R. Kaes, Guobao Wei, Anil Mistry
  • Patent number: 10080661
    Abstract: An osteoimplant composite comprising a plurality of particles of an inorganic material, a bone substitute material, a bone-derived material, or any combination thereof; and a polymer material with which the particles are combined. The composite is either naturally moldable or flowable, or it can be made moldable or settable. After implantation, the composite may be set to provide mechanical strength to the implant. The inventive composite have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength required for most orthopedic applications. The invention also provides methods of using and preparing the moldable and flowable composites.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 25, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Deger C. Tunc, John Winterbottom, David R. Kaes, Todd Boyce, David Knaack, James Russell, Subhabrata Bhattacharyya
  • Publication number: 20180250442
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 6, 2018
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd Boyce, Lawrence A. Shimp
  • Publication number: 20180193077
    Abstract: A bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder on the coherent mass. In some embodiments, a method of implanting a bone material is provided, the method comprising contacting the bone material with a liquid, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass; molding the bone material into a shape to implant the bone material; and implanting the bone material at the target tissue site.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Patent number: 10006705
    Abstract: Methods for treating bulk bone tissue are provided. The methods comprise contacting bulk bone tissue or frozen bulk bone tissue with an effective amount of a supercritical fluid so as to dry the bulk bone tissue. In various embodiments, the supercritical fluid destroys contaminants such that the frozen bulk bone tissue is 99.9% substantially pure. In various embodiments, contaminants removed from the frozen bulk bone tissue include lipids, viruses, bacteria, pyrogens, prions, micro-organisms and/or pathogens. In some embodiments, the supercritical fluid causes a 3 log reduction of bacteria within the frozen bulk bone tissue.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: June 26, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, David R. Kaes, Susan J. Drapeau, Subhabrata Bhattacharyya
  • Patent number: 9993579
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 12, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9913676
    Abstract: A bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material for hydration with a liquid is provided, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder on the coherent mass. In some embodiments, a method of implanting a bone material is provided, the method comprising contacting the bone material with a liquid, the bone material comprising a coherent mass of cartridge milled, lyophilized and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass; molding the bone material into a shape to implant the bone material; and implanting the bone material at the target tissue site.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 13, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem N. Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Publication number: 20180044638
    Abstract: A tissue treatment apparatus and method for treating bone tissue has a controller, an enclosure, a reagent supply system, a draining configuration, and a gas relief valve is controlled by the controller. A bioactive agent may be applied through the reagent supply system. Optionally provided is a gas evacuation assembly, a gas supply unit, a thermal unit for heating or cooling reagents or gases, a sonication unit, any or each operated by the controller. The method provides for programming controller to effect a treatment procedure. In an embodiment of the present application the treatment procedure effects demineralization of the bone material.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Subhabrata Bhattacharyya, David R. Kaes, Daniel A. Shimko
  • Publication number: 20170304496
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9789223
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 17, 2017
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9480575
    Abstract: A spinal implant comprises a first member including a wall that defines a first cavity and a second member including a wall defining a second cavity. At least one first expandable bone graft is disposable within the second cavity. The second member is axially translatable relative to the first member between a first configuration and a second, expanded configuration such that at least a portion of the at least one first graft is disposed within the first cavity and the first cavity includes a substantially void portion. At least one second bone graft has a selective configuration and dimension for disposal within the substantially void portion. Systems and methods are disclosed.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: November 1, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Julien J. Prevost, Charles A. Britt, Kyle A. Hess, David R. Kaes, Kelly W. Schlachter, Guobao Wei
  • Publication number: 20160250025
    Abstract: An osteoimplant composite comprising a plurality of particles of an inorganic material, a bone substitute material, a bone-derived material, or any combination thereof; and a polymer material with which the particles are combined. The composite is either naturally moldable or flowable, or it can be made moldable or settable. After implantation, the composite may be set to provide mechanical strength to the implant. The inventive composite have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength required for most orthopedic applications. The invention also provides methods of using and preparing the moldable and flowable composites.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Deger C. Tunc, John Winterbottom, David R. Kaes, Todd Boyce, David Knaack, James Russell, Subhabrata Bhattacharyya
  • Publication number: 20160243284
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Publication number: 20160231056
    Abstract: Methods for treating bulk bone tissue are provided. The methods comprise contacting bulk bone tissue or frozen bulk bone tissue with an effective amount of a supercritical fluid so as to dry the bulk bone tissue. In various embodiments, the supercritical fluid destroys contaminants such that the frozen bulk bone tissue is 99.9% substantially pure. In various embodiments, contaminants removed from the frozen bulk bone tissue include lipids, viruses, bacteria, pyrogens, prions, micro-organisms and/or pathogens. In some embodiments, the supercritical fluid causes a 3 log reduction of bacteria within the frozen bulk bone tissue.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: Guobao Wei, David R. Kaes, Susan J. Drapeau, Subhabrata Bhattacharyya
  • Publication number: 20160166303
    Abstract: A device for mixing a bone material with a liquid is provided. The device comprises a chamber having a proximal end and a distal end, and the bone material disposed within the chamber, the bone material comprising a coherent mass of milled and lyophilized demineralized bone fibers; and a plunger having at least a portion slidably disposed within the proximal end of the chamber and configured to dispense the bone material mixed with liquid from the distal end of the chamber, when the plunger is in an extended position.
    Type: Application
    Filed: November 13, 2015
    Publication date: June 16, 2016
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem N. Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya
  • Publication number: 20160136329
    Abstract: A bone material comprising a coherent mass of cartridge milled and demineralized bone fibers is provided, the coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a bone material comprising a lyophilized coherent mass of cartridge milled and demineralized bone fibers is provided, the lyophilized coherent mass having no binder disposed in or on the coherent mass. In some embodiments, a method of making an implantable bone material is provided, the method comprising drying a coherent mass of cartridge milled and demineralized bone fibers, the coherent mass having no binder disposed in or on the coherent mass.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 19, 2016
    Inventors: Kelly W. Schlachter, Daniel A. Shimko, Kerem N. Kalpakci, Erick Vasquez, David R. Kaes, Subhabrata Bhattacharyya