Patents by Inventor David R. Liu

David R. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250034549
    Abstract: Disclosed herein are compositions, methods, kits, and systems relating to efficient delivery of cargos (e.g., therapeutic cargos) into cells, for instance, for in vivo delivery. The present disclosure provides lipid-containing particles (e.g., virus-like particles) for delivering therapeutic cargos. The present disclosure also provides polynucleotides encoding the lipid-containing particles provided herein, which may be useful for producing said lipid-containing particles. Also provided are methods for editing nucleic acid molecules in cells using the lipid-containing particles provided herein, as well as cells and kits comprising the lipid-containing particles.
    Type: Application
    Filed: December 2, 2022
    Publication date: January 30, 2025
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Thomas J. Cahill, III, Philip DeSouza, Aditya Raguram, Samagya Banskota, Meirui An
  • Publication number: 20250027114
    Abstract: The present disclosure provides Cas9 variants, and base editors comprising these variants, that recognize non-canonical protospacer adjacent motifs (PAMs) and have less restrictive PAM requirements for editing. The present disclosure provides Cas9 protein variants comprising one or more amino acid substitutions relative to wild-type Nme2Cas9. Fusion proteins comprising the Cas protein variants described herein are also provided by the present disclosure. Further provided herein are methods for editing a target nucleic acid using the Cas variants and fusion proteins provided herein. The present disclosure also provides guide RNAs, complexes, polynucleotides, cells, kits, and pharmaceutical compositions. Further described herein are phage-assisted continuous evolution (PACE) systems, vectors, methods, and devices.
    Type: Application
    Filed: October 3, 2024
    Publication date: January 23, 2025
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, Trustees of Boston University
    Inventors: David R. Liu, Tony P. Huang, Zachary J. Heins, Ahmad S. Khalil
  • Publication number: 20250011748
    Abstract: The specification provides programmable base editors that are capable of introducing a nucleotide change and/or which could alter or modify the nucleotide sequence at a target site in mitochondrial DNA (mtDNA) with high specificity and efficiency. Moreover, the disclosure provides fusion proteins and compositions comprising a programmable DNA binding protein (e.g., a mitoTALE, a mitoZFP, or a CRISPR/Casp) and double-stranded DNA deaminase that is capable of being delivered to the mitochondria and carrying out precise installation of nucleotide changes in the mtDNA. The fusion proteins and compositions are not limited for use with mtDNA, but also may be used for base editing of any double-stranded target DNA.
    Type: Application
    Filed: January 28, 2021
    Publication date: January 9, 2025
    Applicants: The Broad Institute, Inc., University of Washington, President and Fellows of Harvard College
    Inventors: David R. Liu, Beverly Mok, Joseph D. Mougous, Snow Brook Peterson, Marcos de Moraes, Julian Willis
  • Publication number: 20240417719
    Abstract: Disclosed are constructs, systems, and methodologies using prime editing (PE), twin prime editing (twinPE), or multi-flap prime editing to carry out site-specific and large-scale genetic modification, such as, but not limited to, insertions, deletions, inversions, replacements, and chromosomal translocations of whole or partial genes (e.g., whole gene, gene exons and/or introns, and gene regulatory regions). In certain embodiments, the disclosure provides constructs, systems, and methods using prime editing (PE), e.g., single flap or “classical” PE or twinPE or multi-flap PE, to install one or more target sites for site specific recombination in a target genomic locus (e.g., a specific gene, exon, intron, or regulatory sequence), which may then be acted on by one or more site-specific recombinases to effectuate a large-scale genetic modification, such as an insertions, deletions, inversions, replacements, and chromosomal translocations.
    Type: Application
    Filed: October 25, 2022
    Publication date: December 19, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, Christopher J. Podracky, Xin Gao
  • Publication number: 20240417753
    Abstract: The present disclosure provides new prime editor guide RNAs for prime editing, constructs for prime editing, and methods for using same. In addition, the present disclosure provides compositions and methods for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis (e.g., insertion or deletion). The nucleotide change can include a single-nucleotide change (e.g., any transition or any transversion), an insertion of one or more nucleotides, or a deletion of one or more nucleotides. More in particular, the disclosure provides fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a prime editor RNA (PEgRNA).
    Type: Application
    Filed: March 19, 2020
    Publication date: December 19, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, Massachusetts Institute of Technology
    Inventors: David R. Liu, Andrew Vito Anzalone, Max Walt Shen
  • Publication number: 20240417715
    Abstract: The present disclosure provides compositions and methods for the targeted modification of RNA molecules by RNA prime editing. The compositions and methods may be conducted invitro or in vivo within cells (e.g., human cells) for the therapeutic correction of disease-causing mutations and/or installation of motifs or mutations in RNA molecules of interest as a tool for scientific research. The disclosure provides compositions and methods for conducting RNA prime editing of a target RNA molecule (e.g., an RNA transcript) that enables the incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target RNA molecule. The nucleotide change can include a single-nucleotide change, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
    Type: Application
    Filed: October 9, 2020
    Publication date: December 19, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson, Peter J. Chen
  • Publication number: 20240401018
    Abstract: The specification provides programmable base editors that are capable of introducing a nucleotide change and/or which could alter or modify the nucleotide sequence at a target site in a double-stranded nucleotide sequence, such as, a chromosome, genome, or a mitochondrial DNA (mtDNA), with high specificity and efficiency. Moreover, the disclosure provides fusion proteins and compositions comprising a programmable DNA binding protein (e.g., a mitoTALE, a mitoZFP, or a CRISPR/Cas9) and evolved double-stranded DNA deaminase domains that is capable of being delivered to a cell nucleus and/or a mitochondria and carrying out precise installation of nucleotide changes in the target a double-stranded nucleotide sequence, such as, a chromosome, genome, or mtDNA. The fusion proteins and compositions are not limited for use with mtDNA, but may be used for base editing of any double-stranded target DNA.
    Type: Application
    Filed: April 12, 2022
    Publication date: December 5, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Beverly Mok
  • Patent number: 12157760
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. The disclosure provides fusion proteins of nucleic acid programmable DNA binding proteins (napDNAbp), e.g., Cas9 or variants thereof, and nucleic acid editing proteins such as cytidine deaminase domains (e.g., novel cytidine deaminases generated by ancestral sequence reconstruction), and adenosine deaminases that deaminate adenine in DNA. Aspects of the disclosure relate to fusion proteins (e.g., base editors) that have improved expression and/or localize efficiently to the nucleus. In some embodiments, base editors are codon optimized for expression in mammalian cells. In some embodiments, base editors include multiple nuclear localization sequences (e.g., bipartite NLSs), e.g., at least two NLSs.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: December 3, 2024
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Luke W. Koblan, Christopher Gerard Wilson, Jordan Leigh Doman
  • Publication number: 20240344055
    Abstract: The present disclosure provides systems, methods, and compositions for modifying the crumbs homologue-1 gene. Particularly the present disclosure provides systems, methods, and compositions for prime editing insertion or correction of mutations in the crumbs homologue-1 gene.
    Type: Application
    Filed: March 27, 2024
    Publication date: October 17, 2024
    Inventors: Peter M.J. Quinn, Bruna Lopes da Costa, Stephen H. Tsang, David R. Liu
  • Publication number: 20240327872
    Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.
    Type: Application
    Filed: April 25, 2024
    Publication date: October 3, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
  • Patent number: 12102691
    Abstract: Compositions are described for direct protein delivery into multiple cell types in the mammalian inner ear. The compositions are used to deliver protein(s) (such as gene editing factors) editing of genetic mutations associated with deafness or associated disorders thereof. The delivery of genome editing proteins for gene editing and correction of genetic mutations protect or restore hearing from genetic deafness. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 1, 2024
    Assignees: Massachusetts Eye and Ear Infirmary, President and Fellows of Harvard College
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Patent number: 12084663
    Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: September 10, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan
  • Publication number: 20240287491
    Abstract: Aspects of the disclosure relate to Botulinum toxin X (BoNT X) protein variants (e.g., BoNT X protease variants). The variants provided herein have been evolved to cleave procaspase-1. Some of the variants provided herein do not cleave the native substrate of BoNT X protease, VAMP1 protein. Further aspects of the disclosure relate to nucleic acids encoding the procaspase-1 cleaving polypeptides described herein and expression vectors comprising the nucleic acids, as well as host cells and fusion proteins comprising the procaspase-1 cleaving polypeptides described herein and kits comprising the procaspase-1 cleaving polypeptides, nucleic acids, fusion proteins, expression vectors, or host cells described herein. Further aspects of the disclosure relate to methods of producing BoNT X protein variants (e.g., BoNT X protease variants) and methods of using the BoNT X protein variants (e.g., BoNT X protease variants), for example, to induce cell death.
    Type: Application
    Filed: May 3, 2024
    Publication date: August 29, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Travis R. Blum, Julia McCreary
  • Publication number: 20240287487
    Abstract: Aspects of this disclosure provide compositions, strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within the genome of a cell or subject, e.g., within the human genome. Fusion proteins capable of inducing a cytosine (C) to guanine (G) change (i.e., transversion changes) in a nucleic acid (e.g., genomic DNA) are provided. Fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9) and nucleic acid editing proteins or protein domains, e.g., deaminase domains, polymerase domains, base excision enzymes, and/or DNA repair proteins, are also provided. Methods for targeted nucleic acid editing are also provided. Reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of a nucleic acid programmable DNA binding protein (e.g., Cas9), and nucleic acid editing proteins or domains, are further provided in the present disclosure.
    Type: Application
    Filed: June 10, 2022
    Publication date: August 29, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, The Regents of the University of California, Massachusetts Institute of Technology
    Inventors: Luke W. Koblan, David R. Liu, Mandana Arbab, Max Walt Shen, Andrew Vito Anzalone, Jeffrey Hussmann
  • Publication number: 20240271119
    Abstract: Aspects of the disclosure relate to compositions, systems, and methods for evolving nucleic acids and proteins utilizing continuous directed evolution in the periplasm of a host cell. In some embodiments, the methods comprise passing a nucleic acid from cell-to-cell in a desired, function dependent manner. The linkage of the desired function and passage of the nucleic acid from cell-to-cell allows for continuous selection and mutation of the nucleic acid.
    Type: Application
    Filed: July 27, 2022
    Publication date: August 15, 2024
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Tina Wang, Mary S. Morrison
  • Publication number: 20240271116
    Abstract: Provided herein are systems, compositions, kits, and methods for the suppression of pain (e.g., chronic pain). Genes encoding ion channels (e.g., SCN9A) responsible for the propagation pain signals in neurons (e.g., DRG neurons) may be edited using a genome editing agent (e.g., a nucleobase editor). In some embodiments, loss-of-function ion channel mutants are generated, leading to pain suppression. In some embodiments, the genome editing agent is administered locally to the site of pain or to the nerves responsible for propagation of the pain signal.
    Type: Application
    Filed: December 19, 2023
    Publication date: August 15, 2024
    Applicant: President and Fellows of Harvard College
    Inventors: Juan Pablo Maianti, David R. Liu
  • Patent number: 12060553
    Abstract: The disclosure provides amino acid sequence variants of Botulinum neurotoxin (BoNT) proteases that cleave (VAMP1, VAMP2, VAMP7, VAMP8, SNAP25, SNAP23, PTEN, etc.) and methods of evolving the same. In some embodiments, proteases described by the disclosure are useful for cleaving proteins found in a cell, that is in an intracellular environment. In some embodiments, proteases described by the disclosure are useful for treating diseases associated with increased or aberrant VAMP7, VAMP8, SNAP23 or PTEN expression or activity, for example, cancer and neurological disorders. Some aspects of this disclosure provide methods for generating BoNT protease variants by continuous directed evolution.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: August 13, 2024
    Assignees: President and Fellows of Harvard College, Ipsen Biopharm Ltd, The Broad Institute, Inc.
    Inventors: Michael S. Packer, Travis R. Blum, David R. Liu, Keith A. Foster, Matthew Brian Beard
  • Patent number: 12060586
    Abstract: Described herein are compositions, vectors, cells, methods, and kits that provide cell data recorder systems for recording cell states. The cell data recorder systems allow for the recording of both the presence and duration of one or more stimuli in a programmable, reproducible, and multiplexable manner. These cell data recorder systems employ a nucleic acid programmable DNA binding protein, such as a Cas9 nuclease, or a fusion protein comprising a nucleic acid programmable DNA binding domain and a nucleic acid editing domain to introduce recordable changes in the genome of a cell or in a plasmid within the cell.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: August 13, 2024
    Assignee: The Broad Institute, Inc.
    Inventors: David R. Liu, Weixin Tang
  • Patent number: 12043653
    Abstract: Compositions and provided to induce cells of the inner ear to renter the cell cycle and to proliferate. In particular, hair cells are induced to proliferate by administration of a composition which activates the Myc and Notch. Supporting cells are induced to transdifferentiate to hair cells by inhibition of Myc and Notch activity or the activation of Atoh1. Methods of treatment include the intracellular delivery of these molecules to a specific therapeutic target.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: July 23, 2024
    Assignees: Massachusetts Eye and Ear Infirmary, President and Fellows of Harvard College
    Inventors: Zheng-Yi Chen, David R. Liu, Margie Li, David B. Thompson, John Zuris
  • Patent number: 12043852
    Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for engineering Cas9 and Cas9 variants that have increased activity on target sequences that do not contain the canonical PAM sequence. In some embodiments, fusion proteins comprising such Cas9 variants and nucleic acid editing domains, e.g., deaminase domains, are provided.
    Type: Grant
    Filed: October 22, 2016
    Date of Patent: July 23, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Johnny Hao Hu