Patents by Inventor David R. Liu
David R. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230220016Abstract: The disclosure provides amino acid sequence variants of Bacillus thuringiensis (Bt) toxins and methods of producing the same. Some aspects of this disclosure provide methods for generating Bt toxin variants by continuous directed evolution. Some aspects of this disclosure provide compositions and methods for pest control using the disclosed variant Bt toxins.Type: ApplicationFiled: October 26, 2022Publication date: July 13, 2023Applicants: President and Fellows of Harvard College, Monsanto CompanyInventors: David R. Liu, Ahmed Hussein Badran, Victor Guzov, Tom Malvar, Prashanth Vishwanath, Jeff Nageotte, Qing Huai, Melissa Kemp
-
Publication number: 20230193295Abstract: Provided herein are systems, compositions, and methods for the incorporation of unnatural amino acids into proteins via nonsense suppression or rare codon suppression. Nonsense codons and rare codons may be introduced into the coding sequence of a protein of interest using a CRISPR/Cas9-based nucleobase editor described herein. The nucleobase editors are able to be programmed by guide nucleotide sequences to edit the target codons in the coding sequence of the protein of interest. Also provided are application enabled by the technology described herein.Type: ApplicationFiled: November 14, 2022Publication date: June 22, 2023Applicant: President and Fellows of Harvard CollegeInventors: Juan Pablo Maianti, David R. Liu, Luke W. Koblan
-
Patent number: 11674136Abstract: The present invention provides nucleic acid templates (e.g., including orthogonal codon sets (e.g., codons from orthogonal codon sets depicted in Tables 5 or 7)) for DNA-templated methods of synthesizing, selecting, and amplifying compounds (e.g., polymers and/or small molecules) described herein. Also provided are novel macrocyclic compounds of Formula (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, libraries, and compositions thereof. Also provided are methods and kits involving the inventive compounds or compositions for treating and/or preventing a disease (e.g., a disease associated with aberrant enzyme activity (e.g., aberrant protease and/or kinase activity (e.g., aberrant IDE activity)), impaired insulin signaling, or insulin resistance in a subject (e.g., a subject having diabetes).Type: GrantFiled: February 8, 2019Date of Patent: June 13, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Dmitry L. Usanov, Juan Pablo Maianti, Alix I. Chan
-
Patent number: 11661590Abstract: Some aspects of this disclosure provide a fusion protein comprising a guide nucleotide sequence-programmable DNA binding protein domain (e.g., a nuclease-inactive variant of Cas9 such as dCas9), an optional linker, and a recombinase catalytic domain (e.g., a tyrosine recombinase catalytic domain or a serine recombinase catalytic domain such as a Gin recombinase catalytic domain). This fusion protein can recombine DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. The instant disclosure represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state.Type: GrantFiled: August 9, 2017Date of Patent: May 30, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Brian Chaikind, Jeffrey L. Bessen
-
Publication number: 20230159913Abstract: The disclosure provides methods of deaminating adenosine and cytosine bases in a target nucleic acid sequence in an USH2A gene comprising contacting the USH2A gene with a base editor in association with a guide RNA (gRNA). In some aspects, base editing is used to restore US2HA function by disrupting a splice site in the USH2A gene sequence to induce skipping of an exon containing a mutation, while in other embodiments, base editing is used to restore US2HA function by correcting a point mutation e.g., in an exon) so as to correct mutations. The disclosure also provides complexes of adenosine base editors and guide RNAs, and complexes of cytidine base editors and guide RNAs. The disclosure further provides pharmaceutical compositions and cells comprising these complexes. The disclosure also provides vectors encoding these complexes, base editors, and gRNAs. In some embodiments, the methods and compositions provided herein are used to treat Usher syndrome and autosomal recessive retinitis pigmentosa (arRP).Type: ApplicationFiled: April 27, 2021Publication date: May 25, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, Massachusetts Eye and Ear InfirmaryInventors: David R. Liu, Jonathan Ma Levy, Wei Hsi Yeh, Jason Comander, Yuki Tachida, Eric A. Pierce, Qin Liu, Nachiket Pendse
-
Patent number: 11649451Abstract: The present invention provides methods and compositions for performing ordered multi-step syntheses involving modified nucleic acids by nucleic acid-mediated chemistry. This approach is useful for generating sequence-defined highly functionalized nucleic acid polymers. The invention also provides modified nucleic acid polymers that bind to proteins of interest (e.g., PCSK9 and IL-6), which are implicated in human disease.Type: GrantFiled: July 6, 2018Date of Patent: May 16, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Zhen Chen, Phillip Andrew Lichtor
-
Patent number: 11643652Abstract: Compositions and methods are provided herein for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The compositions include fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA. The PEgRNA has been altered (relative to a standard guide RNA) to comprise an extended portion that provides a DNA synthesis template sequence which encodes a single strand DNA flap which is synthesized by the polymerase of the fusion protein and which becomes incorporated into the target DNA molecule.Type: GrantFiled: March 31, 2021Date of Patent: May 9, 2023Assignees: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Andrew Vito Anzalone, James William Nelson
-
Publication number: 20230127008Abstract: The disclosure provides adenosine deaminases that are capable of deaminating adenosine in DNA to treat cancers, such as melanoma and glioblastoma. The disclosure also provides fusion proteins, guide RNAs and compositions comprising a Cas9 (e.g., a Cas9 nickase) domain and adenosine deaminases that deaminate adenosine in DNA, for example in a STAT3 gene. In some embodiments, adenosine deaminases provided herein are used to modify the STAT3 gene so that its protein product, STAT3, is unable to be activated. In some embodiments, the methods and compositions provided herein are used to treat melanoma or glioblastoma.Type: ApplicationFiled: March 10, 2021Publication date: April 27, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Wei Hsi Yeh
-
Publication number: 20230117680Abstract: Provided herein are compounds of Formula (I?) or (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and compositions thereof. Also provided are methods and kits involving the inventive compounds or compositions for treating and/or preventing diseases and/or conditions (e.g., neurological (e.g., neurodegenerative) disease (e.g., Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), metabolic disorder (e.g., obesity, diabetes), proliferative disease (e.g., cancers), condition associated with autophagy (e.g., neurodegenerative disease, infection, cancer, condition associated with aging, heart disease), condition associated with aging, condition associated with modulating (e.g., regulating) the mPTP, cardiovascular condition (e.g.Type: ApplicationFiled: December 10, 2020Publication date: April 20, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Alexander A. Peterson, Alvin Hsu
-
Publication number: 20230123669Abstract: The present disclosure provides a novel machine learning model capable of assisting those of ordinary skill in the art to conduct base editing by, inter alia, facilitating the selection of an appropriate guide RNA and base editor combination which are capable of conducting base editing at a certain level of efficiency and specificity on a given input target DNA sequence desired to be edited to produce an outcome genotype of interest. The disclosure also provides base editors (e.g., ABEs and CBEs), napDNAbps, cytidine deaminases, adenosine deaminases, nucleic acid sequences encoding base editors and components thereof, vectors, and cells. In addition, the disclosure provides methods of making biological or experimental training and/or validation data for training and/or validating the machine learning computational models, as well as, vectors, libraries, and nucleic acid sequences for use in obtaining said experimental training and/or validation data.Type: ApplicationFiled: February 5, 2021Publication date: April 20, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard College, Massachusetts Institute of Technology, The Brigham and Woman's Hospital, Inc.Inventors: David R. Liu, Mandana Arbab, Max Walt Shen, Christopher Cassa
-
Patent number: 11624130Abstract: Some aspects of this disclosure relate to systems, apparatuses, compositions (e.g., isolated nucleic acids and vectors), and methods for improving the stability and/or solubility of proteins evolved using phage-assisted continuous evolution (PACE). In some embodiments, vectors described herein comprise nucleic acids encoding selection systems (e.g., positive and/or negative selection systems) that link expression of genes required for production of infectious phage particles to a desirable physiochemical (e.g., stability or solubility) and/or desired function of an evolved protein.Type: GrantFiled: September 18, 2018Date of Patent: April 11, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Ahmed Hussein Badran, Tina Wang
-
Publication number: 20230108687Abstract: The disclosure provides methods, base editors, vectors encoding base editors and cognate gRNAs, and compositions and kits comprise said components, for installing nucleobase edits to the SMN2 locus to increase the activity and/or amount and/or stability of SMN2 protein in a cell, thereby treating Spinal Muscular Atrophy. In certain aspect, the disclosure provides compositions and methods to edit C840T of exon 7 of the SMN2 gene, or installing another one or more nucleobase edits which have the effect of removing or inactivating a degron, such as the C-terminal portion of the region encoded by exon 6 or the 4-amino acid region encoded by exon 8 (i.e., the EMLA (SEQ ID NO: 466)-tail) so as to remove or limit their degron activity to reduce, mitigate, or eliminate the intracellular degradation of the SMN2 protein.Type: ApplicationFiled: February 5, 2021Publication date: April 6, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Mandana Arbab
-
Publication number: 20230090221Abstract: The present disclosure provides compositions and methods for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The nucleotide change can include a single-nucleotide change (e.g., any transition or any transversion), an insertion of one or more nucleotides, or a deletion of one or more nucleotides. More in particular, the disclosure provides fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA.Type: ApplicationFiled: May 23, 2022Publication date: March 23, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Andrew Vito Anzalone, Gregory Newby, Kelcee Everette
-
Publication number: 20230086199Abstract: The instant specification provides novel assays and systems for determining off-target effects of base editors. These assays and systems may comprise bacterial and/or eukaryotic cell systems and may be used to determine off-target editing frequencies, including Cas9-independent off-target editing frequencies. Also provided herein are novel base editors, wherein the base editors have reduced Cas9-independent off-target editing frequencies while maintaining high on-target editing efficiencies. Further provided are methods of contacting a nucleic acid molecule with these base editors to obtain reduced off-target editing frequencies, and in particular reduced Cas9-independent off-target editing events. Further provided are methods of treatment comprising administering these base editors to a subject. Also provided are pharmaceutical compositions comprising the base editors described herein, and nucleic acids, vectors, cells, and kits useful for the generation of these base editors.Type: ApplicationFiled: November 25, 2020Publication date: March 23, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Jordan Leigh Doman, Aditya Raguram
-
Publication number: 20230078265Abstract: The present disclosure provides compositions and methods for conducting prime editing of a target DNA molecule (e.g., a genome) that enables the incorporation of a nucleotide change and/or targeted mutagenesis. The nucleotide change can include a single-nucleotide change (e.g., any transition or any transversion), an insertion of one or more nucleotides, or a deletion of one or more nucleotides. More in particular, the disclosure provides fusion proteins comprising nucleic acid programmable DNA binding proteins (napDNAbp) and a polymerase (e.g., reverse transcriptase), which is guided to a specific DNA sequence by a modified guide RNA, named an PEgRNA.Type: ApplicationFiled: March 19, 2020Publication date: March 16, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Andrew Vito Anzalone
-
Publication number: 20230056852Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific nucleic acid modification using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a nuclease catalytic domain or a recombinase catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.Type: ApplicationFiled: September 30, 2022Publication date: February 23, 2023Applicant: President and Fellows of Harvard CollegeInventors: David R. Liu, John Paul Guilinger, David B. Thompson
-
Publication number: 20230058176Abstract: Some aspects of this disclosure provide compositions, methods, systems, and kits for controlling the activity and/or improving the specificity of RNA-programmable endonucleases, such as Cas9. For example, provided are guide RNAs (gRNAs) that are engineered to exist in an “on” or “off” state, which control the binding and hence cleavage activity of RNA-programmable endonucleases. Some aspects of this disclosure provide mRNA-sensing gRNAs that modulate the activity of RNA-programmable endonucleases based on the presence or absence of a target mRNA. Some aspects of this disclosure provide gRNAs that modulate the activity of an RNA-programmable endonuclease based on the presence or absence of an extended DNA (xDNA).Type: ApplicationFiled: March 7, 2022Publication date: February 23, 2023Applicant: President and Fellows of Harvard CollegeInventors: David R. Liu, Johnny Hao Hu
-
Patent number: 11578343Abstract: Some aspects of this disclosure provide compositions, methods, systems, and kits for controlling the activity of RNA-programmable endonucleases, such as Cas9, or for controlling the activity of proteins comprising a Cas9 variant fused to a functional effector domain, such as a nuclease, nickase, recombinase, deaminase, transcriptional activator, transcriptional repressor, or epigenetic modifying domain. For example, the inventive proteins provided comprise a ligand-dependent intein, the presence of which inhibits one or more activities of the protein (e.g., gRNA binding, enzymatic activity, target DNA binding). The binding of a ligand to the intein results in self-excision of the intein, restoring the activity of the protein.Type: GrantFiled: May 29, 2020Date of Patent: February 14, 2023Assignee: President and Fellows of Harvard CollegeInventors: David R. Liu, Kevin Davis
-
Publication number: 20230021641Abstract: Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for engineering Cas9 and Cas9 variants that have increased activity on target sequences that do not contain the canonical PAM sequence. In some embodiments, fusion proteins comprising such Cas9 variants and nucleic acid editing domains, e.g., deaminase domains, are also provided.Type: ApplicationFiled: August 23, 2019Publication date: January 26, 2023Applicants: The Broad Institute, Inc., President and Fellows of Harvard CollegeInventors: David R. Liu, Tina Wang, Shannon Miller
-
Patent number: 11560566Abstract: Some aspects of this disclosure provide compositions, methods, systems, and kits for controlling the activity and/or improving the specificity of RNA-programmable proteins, such as Cas9. For example, provided are guide RNAs (gRNAs) that are engineered to exist in an “on” or “off” state, which control the binding and, in certain instances, cleavage activity of RNA-programmable proteins (e.g., RNA-programmable endonucleases). By incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, a set of aptazyme-embedded guide RNAs was developed that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells.Type: GrantFiled: May 11, 2018Date of Patent: January 24, 2023Assignee: President and Fellows of Harvard CollegeInventors: Weixin Tang, Johnny Hao Hu, David R. Liu