Patents by Inventor David Schleuning

David Schleuning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947048
    Abstract: Example embodiments relate to crosstalk reduction for light detection and ranging (lidar) devices using wavelength locking. An example embodiment includes a lidar device. The lidar device includes a first light emitter configured to emit a first light signal and a second light emitter configured to emit a second light signal. The lidar device also includes a first light guide and a second light guide. In addition, the lidar device includes a first light detector and a second light detector. Further, the lidar device includes a first wavelength-locking mechanism configured to use a portion of the first light signal to maintain a wavelength of the first light signal and a second wavelength-locking mechanism configured to use a portion of the second light signal to maintain a wavelength of the second light signal. The wavelengths of the first light signal and the second light signal are different.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: April 2, 2024
    Assignee: Waymo LLC
    Inventors: David Schleuning, Pierre-Yves Droz, Jason Watson, James Dunphy
  • Publication number: 20240071093
    Abstract: Example embodiments relate to time-division multiple access scanning for crosstalk mitigation in light detection and ranging (lidar) devices. An example embodiment includes a method. The method includes emitting a first group of light signals into a surrounding environment. The first group of light signals corresponds to a first angular resolution. The method also includes detecting, during a first listening window, a first group of reflected light signals. Additionally, the method includes emitting a second group of light signals into the surrounding environment. The second group of light signals corresponds to a second angular resolution with respect to the surrounding environment. The second angular resolution is lower than the first angular resolution. Further, the method includes detecting a second group of reflected light signals from the surrounding environment. In addition, the method includes synthesizing, by a controller of the lidar device, a dataset usable to generate one or more point clouds.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 29, 2024
    Inventors: Georges Goetz, James Dunphy, Augusto Tazzoli, David Schleuning
  • Patent number: 11892572
    Abstract: The present disclosure relates to multi-channel optical transmitter modules, lidar systems, and methods that involve micromirror devices. An example optical transmitter module includes at least one light-emitter device and a plurality of micromirror devices optically-coupled to the at least one light-emitter device. The at least one light-emitter device is configured to emit respective light beams toward an environment via the micromirror devices. The micromirror devices are configured to deflect the light beams. The optical transmitter module also includes a controller having at least one processor and a memory. The controller is configured to carry out operations. The operations include receiving information indicative of a retroreflector object in the environment.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: February 6, 2024
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Schleuning, Ralph Shepard
  • Patent number: 11726277
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: August 15, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Schleuning
  • Publication number: 20230194681
    Abstract: The present disclosure relates to systems and methods that provide both an image of a scene and depth information for the scene. An example system includes at least one time-of-flight (ToF) sensor and an imaging sensor. The ToF sensor and the imaging sensor are configured to receive light from a scene. The system also includes at least one light source and a controller that carries out operations. The operations include causing the at least one light source to illuminate at least a portion of the scene with illumination light according to an illumination schedule. The operations also include causing the at least one ToF sensor to provide information indicative of a depth map of the scene based on the illumination light. The operations additionally include causing the imaging sensor to provide information indicative of an image of the scene based on the illumination light.
    Type: Application
    Filed: February 21, 2023
    Publication date: June 22, 2023
    Inventors: Caner Onal, David Schleuning, Brendan Hermalyn, Simon Verghese, Alex McCauley, Brandyn White, Ury Zhilinsky
  • Patent number: 11609313
    Abstract: The present disclosure relates to systems and methods that provide both an image of a scene and depth information for the scene. An example system includes at least one time-of-flight (ToF) sensor and an imaging sensor. The ToF sensor and the imaging sensor are configured to receive light from a scene. The system also includes at least one light source and a controller that carries out operations. The operations include causing the at least one light source to illuminate at least a portion of the scene with illumination light according to an illumination schedule. The operations also include causing the at least one ToF sensor to provide information indicative of a depth map of the scene based on the illumination light. The operations additionally include causing the imaging sensor to provide information indicative of an image of the scene based on the illumination light.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 21, 2023
    Assignee: Waymo LLC
    Inventors: Caner Onal, David Schleuning, Brendan Hermalyn, Simon Verghese, Alex McCauley, Brandyn White, Ury Zhilinsky
  • Publication number: 20230058317
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Application
    Filed: September 1, 2022
    Publication date: February 23, 2023
    Inventors: Pierre-Yves Droz, David Schleuning
  • Publication number: 20230003852
    Abstract: The present disclosure relates to light detection and ranging (lidar) systems, lidar-equipped vehicles, and associated methods. An example method includes causing a firing circuit to trigger emission of an initial group of detection pulses from at least one light-emitter device of a lidar system in accordance with an initial set of one or more light-emission parameters. The method also includes causing the firing circuit to trigger emission of one or more test pulses and receiving, from at least one detector, information indicative of one or more return test pulses. The method yet further includes determining, based on the received information, a presence of a retroreflector based on an intensity of the return test pulse. The method additionally includes determining a subsequent set of light-emission parameters and causing the firing circuit to trigger emission of a subsequent group of detection pulses in accordance with the subsequent set of light-emission parameters.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Inventors: James Dunphy, Caner Onal, David Schleuning
  • Patent number: 11460648
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: October 4, 2022
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Schleuning
  • Publication number: 20220276384
    Abstract: The present disclosure relates to systems and methods that provide information about a scene based on a time-of-flight (ToF) sensor and a structured light pattern. In an example embodiment, a sensor system could include at least one ToF sensor configured to receive light from a scene. The sensor system could also include at least one light source configured to emit a structured light pattern and a controller that carries out operations. The operations include causing the at least one light source to illuminate at least a portion of the scene with the structured light pattern and causing the at least one ToF sensor to provide information indicative of a depth map of the scene based on the structured light pattern.
    Type: Application
    Filed: May 6, 2022
    Publication date: September 1, 2022
    Inventors: Caner Onal, David Schleuning, Brendan Hermalyn, Simon Verghese, Alexander McCauley, Brandyn White, Ury Zhilinsky
  • Publication number: 20220244362
    Abstract: Example embodiments relate to arrays of light detectors with a corresponding array of optical elements. An example embodiment includes a light detection and ranging (LIDAR) system. The LIDAR system includes an array of light detectors. The LIDAR system also includes a shared imaging optic. Further, the LIDAR system includes an array of optical elements positioned between the shared imaging optic and the array of light detectors. Each light detector in the array of light detectors is configured to detect a respective light signal from a respective region of a scene. Each respective light signal is transmitted via the shared imaging optic and modified by a respective optical element in the array of optical elements based on at least one aspect of the scene.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 4, 2022
    Inventors: Ralph H. Shepard, Pierre-Yves Droz, David Schleuning, Mark Shand, Luke Wachter
  • Patent number: 11353588
    Abstract: The present disclosure relates to systems and methods that provide information about a scene based on a time-of-flight (ToF) sensor and a structured light pattern. In an example embodiment, a sensor system could include at least one ToF sensor configured to receive light from a scene. The sensor system could also include at least one light source configured to emit a structured light pattern and a controller that carries out operations. The operations include causing the at least one light source to illuminate at least a portion of the scene with the structured light pattern and causing the at least one ToF sensor to provide information indicative of a depth map of the scene based on the structured light pattern.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: June 7, 2022
    Assignee: Waymo LLC
    Inventors: Caner Onal, David Schleuning, Brendan Hermalyn, Simon Verghese, Alex Mccauley, Brandyn White, Ury Zhilinsky
  • Patent number: 11333748
    Abstract: Example embodiments relate to arrays of light detectors with a corresponding array of optical elements. An example embodiment includes a light detection and ranging (LIDAR) system. The LIDAR system includes an array of light detectors. The LIDAR system also includes a shared imaging optic. Further, the LIDAR system includes an array of optical elements positioned between the shared imaging optic and the array of light detectors. Each light detector in the array of light detectors is configured to detect a respective light signal from a respective region of a scene. Each respective light signal is transmitted via the shared imaging optic and modified by a respective optical element in the array of optical elements based on at least one aspect of the scene.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 17, 2022
    Assignee: Waymo LLC
    Inventors: Ralph H. Shepard, Pierre-Yves Droz, David Schleuning, Mark Shand, Luke Wachter
  • Publication number: 20220137185
    Abstract: Example embodiments relate to light detection and ranging (lidar) devices or other apparatus that incorporate laser light emitters capable of increased pulse energies and decreased pulse durations. These laser light emitters include a gain medium having two portions to which a pump electrode and a switch electrode, respectively, are coupled. The pump electrode is configured to apply a current through the gain medium that provides energy for lasing and the switch electrode is configured to apply a current through the gain medium that controls a transparency of the second portion of the gain medium. Thus the switch electrode, which controls the timing of emitted light pulses, can be driven by a lower current and thus have shorter pulse widths, rise time, and/or fall times, thereby allowing for shorter, higher-energy laser pulses to be emitted.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 5, 2022
    Inventors: David Schleuning, Pierre-Yves Droz, Augusto Tazzoli, Vadim Gutnik, Pablo Hopman
  • Publication number: 20220137230
    Abstract: Example embodiments relate to light detection and ranging (lidar) devices having vertical-cavity surface-emitting laser (VCSEL) emitters. An example lidar device includes an array of individually addressable VCSELs configured to emit light pulses into an environment surrounding the lidar device. The lidar device also includes a firing circuit configured to selectively fire the individually addressable VCSELs in the array. In addition, the lidar device includes a controller configured to control the firing circuit using a control signal. Further, the lidar device includes a plurality of detectors. Each detector in the plurality of detectors is configured to detect reflections of light pulses that are emitted by one or more individually addressable VCSELs in the array and reflected by one or more objects in the environment surrounding the lidar device.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 5, 2022
    Inventors: David Schleuning, James Dunphy, Augusto Tazzoli, Matthew Last
  • Publication number: 20220082660
    Abstract: Example embodiments relate to light detection and ranging (lidar) devices having a light-guide manifold. An example lidar device includes a transmit subsystem. The transmit subsystem includes a light emitter. The transmit subsystem also includes a light-guide manifold optically coupled to the light emitter. Further, the transmit subsystem includes a telecentric lens assembly optically coupled to the light-guide manifold. The lidar device also includes a receive subsystem. The receive subsystem includes the telecentric lens assembly. The receive subsystem also includes an aperture plate having an aperture defined therein. The aperture plate is positioned at a focal plane of the telecentric lens assembly. Further, the receive subsystem includes a silicon photomultiplier (SiPM) positioned to receive light traveling through the aperture.
    Type: Application
    Filed: December 15, 2020
    Publication date: March 17, 2022
    Inventors: Pierre-Yves Droz, Ralph H. Shepard, Augusto Tazzoli, David Hutchison, David Schleuning, Nathaniel Golshan, Nathaniel Quillin, Andrew Abo, Caner Onal, Michael Tom, Robert Lockwood, Kelvin Kwong, Daiwei Li, Drew Ulrich, Simon Ellgas, Chandra Kakani, Erin Eppard, Samuel Lenius, Justin Andrade, James Dunphy
  • Publication number: 20220019034
    Abstract: The present disclosure relates to transmitter modules, vehicles, and methods associated with lidar sensors. An example transmitter module could include a light-emitter die and a plurality of light-emitter devices coupled to the light-emitter die. Each light-emitter of the plurality of light-emitter devices is configured to emit light from a respective emitter surface. The transmitter module also includes a cylindrical lens optically coupled to the plurality of light-emitter devices and arranged along an axis. The light-emitter die is disposed such that the respective emitter surfaces of the plurality of light-emitter devices form a non-zero yaw angle with respect to the axis.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Inventors: Michael Matthews, David Schleuning, Carolyn Wozniak
  • Publication number: 20210349185
    Abstract: Example embodiments relate to crosstalk reduction for light detection and ranging (lidar) devices using wavelength locking. An example embodiment includes a lidar device. The lidar device includes a first light emitter configured to emit a first light signal and a second light emitter configured to emit a second light signal. The lidar device also includes a first light guide and a second light guide. In addition, the lidar device includes a first light detector and a second light detector. Further, the lidar device includes a first wavelength-locking mechanism configured to use a portion of the first light signal to maintain a wavelength of the first light signal and a second wavelength-locking mechanism configured to use a portion of the second light signal to maintain a wavelength of the second light signal. The wavelengths of the first light signal and the second light signal are different.
    Type: Application
    Filed: October 1, 2020
    Publication date: November 11, 2021
    Inventors: David Schleuning, Pierre-Yves Droz, Jason Watson, James Dunphy
  • Publication number: 20210239923
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Pierre-Yves Droz, David Schleuning
  • Patent number: 10989886
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: April 27, 2021
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Schleuning